Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(2): 427-432, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279372

RESUMO

Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.


Assuntos
Tecido Adiposo/metabolismo , Peso Corporal/fisiologia , Homeostase/efeitos dos fármacos , Leptina/farmacologia , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/fisiologia , Leptina/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Osteócitos/metabolismo , Ratos Sprague-Dawley , Redução de Peso/efeitos dos fármacos , Redução de Peso/fisiologia
2.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085706

RESUMO

Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.


Assuntos
Morte Celular , Quimiotaxia/imunologia , Ácidos Graxos Insaturados/administração & dosagem , Neutrófilos/imunologia , Baço/patologia , Animais , Diferenciação Celular , Dieta Hiperlipídica , Fator Estimulador de Colônias de Granulócitos/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Homeostase , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia
3.
Neuroendocrinology ; 109(4): 310-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889580

RESUMO

Interleukin (IL)-6 in the hypothalamus and hindbrain is an important downstream mediator of suppression of body weight and food intake by glucagon-like peptide-1 (GLP-1) receptor stimulation. CNS GLP-1 is produced almost exclusively in prepro-glucagon neurons in the nucleus of the solitary tract. These neurons innervate energy balance-regulating areas, such as the external lateral parabrachial nucleus (PBNel); essential for induction of anorexia. Using a validated novel IL-6-reporter mouse strain, we investigated the interactions in PBNel between GLP-1, IL-6, and calcitonin gene-related peptide (CGRP, a well-known mediator of anorexia). We show that PBNel GLP-1R-containing cells highly (to about 80%) overlap with IL-6-containing cells on both protein and mRNA level. Intraperitoneal administration of a GLP-1 analogue exendin-4 to mice increased the proportion of IL-6-containing cells in PBNel 3-fold, while there was no effect in the rest of the lateral parabrachial nucleus. In contrast, injections of an anorexigenic peptide growth and differentiation factor 15 (GDF15) markedly increased the proportion of CGRP-containing cells, while IL-6-containing cells were not affected. In summary, GLP-1R are found on IL-6-producing cells in PBNel, and GLP-1R stimulation leads to an increase in the proportion of cells with IL-6-reporter fluorescence, supporting IL-6 mediation of GLP-1 effects on energy balance.


Assuntos
Proteínas de Transporte/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Interleucina-6/biossíntese , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Animais , Regulação do Apetite , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Proteínas de Transporte/agonistas , Metabolismo Energético/efeitos dos fármacos , Exenatida/administração & dosagem , Exenatida/farmacologia , Genes Reporter/efeitos dos fármacos , Imuno-Histoquímica , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Núcleos Parabraquiais/efeitos dos fármacos
4.
Am J Physiol Endocrinol Metab ; 313(4): E450-E462, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28655716

RESUMO

Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis.


Assuntos
Tecido Adiposo Branco/metabolismo , Aromatase/genética , Estradiol/metabolismo , Resistência à Insulina/genética , Testosterona/metabolismo , Adipócitos , Adipogenia/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/imunologia , Animais , Técnicas de Introdução de Genes , Transportador de Glucose Tipo 4/metabolismo , Inflamação , Proteínas Substratos do Receptor de Insulina/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , PPAR gama/metabolismo , Regulação para Cima
5.
Infect Immun ; 84(4): 1205-1213, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857576

RESUMO

Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.


Assuntos
Carga Bacteriana/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Sepse/microbiologia , Infecções Estafilocócicas/dietoterapia , Staphylococcus aureus , Tecido Adiposo , Animais , Citocinas/genética , Citocinas/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Inflamação/metabolismo , Camundongos , Distribuição Aleatória , Sepse/dietoterapia , Infecções Estafilocócicas/microbiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R115-23, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27097661

RESUMO

Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca(2+) concentration in neurons capable of expressing PPG. We also show that the Ca(2+) increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca(2+) to the cytosol from the extracellular space.


Assuntos
Cálcio/metabolismo , Interleucina-6/farmacologia , Neurônios/metabolismo , Proglucagon/fisiologia , Rombencéfalo/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Ligação a DNA , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Interleucina-6/metabolismo , Rombencéfalo/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
7.
FASEB J ; 29(4): 1540-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25550469

RESUMO

Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)-dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)-deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (-41%; thoracic aorta), subcutaneous fat mass (-44%), and cholesterol levels (-35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism.


Assuntos
Aterosclerose/prevenção & controle , Dislipidemias/prevenção & controle , Obesidade/prevenção & controle , Receptores Androgênicos/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Colesterol/metabolismo , Dieta/efeitos adversos , Di-Hidrotestosterona/farmacologia , Dislipidemias/etiologia , Dislipidemias/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Feminino , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Orquiectomia , Ovariectomia , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética
9.
Proc Natl Acad Sci U S A ; 110(40): 16199-204, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24048027

RESUMO

Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from ß-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1ß (IL-1ß) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1ß in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.


Assuntos
Regulação do Apetite/fisiologia , Peso Corporal/fisiologia , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Obesidade/metabolismo , Receptores de Glucagon/metabolismo , Análise de Variância , Animais , Western Blotting , Técnicas de Silenciamento de Genes , Receptor do Peptídeo Semelhante ao Glucagon 1 , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-1/genética
10.
Infect Immun ; 83(2): 514-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404025

RESUMO

Severe infection, including sepsis, is an increasing clinical problem that causes prolonged morbidity and substantial mortality. At present, antibiotics are essentially the only pharmacological treatment for sepsis. The incidence of resistance to antibiotics is increasing; therefore, it is critical to find new therapies for sepsis. Staphylococcus aureus is a major cause of septic mortality. Neutrophils play an important role in the defense against bacterial infections. We have shown that a diet with high levels of dietary saturated fatty acids decreases survival in septic mice, but the mechanisms behind this remain elusive. The aim of the present study was to investigate how the differences in dietary fat composition affect survival and bacterial load after experimental septic infection and neutrophil function in uninfected mice. We found that, after S. aureus infection, mice fed a polyunsaturated high-fat diet (HFD-P) for 8 weeks had increased survival and decreased bacterial load during sepsis compared with mice fed a saturated high-fat diet (HFD-S), similar to mice fed a low-fat diet (LFD). Uninfected mice fed HFD-P had a higher frequency of neutrophils in bone marrow than mice fed HFD-S. In addition, mice fed HFD-P had a higher frequency of neutrophils recruited to the site of inflammation in response to peritoneal injection of thioglycolate than mice fed HFD-S. Differences between the proportion of dietary protein and carbohydrate did not affect septic survival at all. In conclusion, polyunsaturated dietary fat increased both survival and efficiency of bacterial clearance during septic S. aureus infection. Moreover, this diet increased the frequency and chemotaxis of neutrophils, key components of the immune response to S. aureus infections.


Assuntos
Carga Bacteriana/efeitos dos fármacos , Gorduras Insaturadas na Dieta/imunologia , Ácidos Graxos Insaturados/administração & dosagem , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Animais , Células da Medula Óssea/imunologia , Catepsina D/biossíntese , Quimiotaxia/imunologia , Dieta , Dieta Hiperlipídica/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sepse/imunologia , Sepse/microbiologia , Staphylococcus aureus/imunologia , Tioglicolatos
11.
PLoS Genet ; 8(7): e1002805, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829776

RESUMO

Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11)), GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ~15.6% and ~8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.


Assuntos
Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais/genética , Globulina de Ligação a Hormônio Sexual/genética , Alelos , Feminino , Heterogeneidade Genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Caracteres Sexuais
12.
PLoS Genet ; 7(10): e1002313, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998597

RESUMO

Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10(-41) and rs6258, p = 2.3×10(-22)). Subjects with ≥ 3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10(-16)). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation.


Assuntos
Proteínas Nucleares/genética , Globulina de Ligação a Hormônio Sexual/genética , Testosterona/sangue , Adulto , Idoso de 80 Anos ou mais , Alelos , Índice de Massa Corporal , Cromossomos Humanos X/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
13.
Artigo em Inglês | MEDLINE | ID: mdl-38753869

RESUMO

CONTEXT: Increased standing time has been associated with improved health, but the underlying mechanism is unclear. OBJECTIVES: We herein investigate if increased weight loading increases energy demand and thereby glucose uptake (GU) locally in bone and/or muscle in the lower extremities. METHODS: In this single-center clinical trial with randomized crossover design (ClinicalTrials.gov ID, NCT05443620), we enrolled 10 men with body mass index (BMI) between 30 and 35 kg/m2. Participants were treated with both high load (standing with weight vest weighing 11% of body weight) and no load (sitting) on the lower extremities. GU was measured using whole-body quantitative positron emission tomography/computed tomography (PET/CT) imaging. The primary endpoint was the change in GU ratio between loaded bones (i.e. femur and tibia) and non-loaded bones (i.e. humerus). RESULTS: High load increased the GU ratio between lower and upper extremities in cortical diaphyseal bone (e.g. femur/humerus ratio increased by 19%, p = 0.029), muscles (e.g. m. quadriceps femoris/m. triceps brachii ratio increased by 28%, p = 0.014) and in certain bone marrow regions (femur/humerus diaphyseal bone marrow region ratio increased by 17%, p = 0.041). Unexpectedly, we observed the highest GU in the bone marrow region of vertebral bodies, but its GU was not affected by high load. CONCLUSIONS: Increased weight-bearing loading enhances GU in muscles, cortical bone, and bone marrow of the exposed lower extremities. This could be interpreted as increased local energy demand in bone and muscle caused by increased loading. The physiological importance of the increased local GU by static loading remains to be determined.

14.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220219, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37661748

RESUMO

Body weight is tightly regulated when outside the normal range. It has been proposed that there are individual-specific lower and upper intervention points for when the homeostatic regulation of body weight is initiated. The nature of the homeostatic mechanisms regulating body weight at the lower and upper ends of the body weight spectrum might differ. Previous studies demonstrate that leptin is the main regulator of body weight at the lower end of the body weight spectrum. We have proposed that land-living animals use gravity to regulate their body weight. We named this homeostatic system the gravitostat and proposed that there are two components of the gravitostat. First, an obvious mechanism involves increased energy consumption in relation to body weight when working against gravity on land. In addition, we propose that there exists a component, involving sensing of the body weight by osteocytes in the weight-bearing bones, resulting in a feedback regulation of energy metabolism and body weight. The gravity-dependent homeostatic regulation is mainly active in obese mice. We, herein, propose the dual hypothesis of body weight regulation, including gravity-dependent actions (= gravitostat) at the upper end and leptin-dependent actions at the lower end of the body weight spectrum. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Assuntos
Leptina , Obesidade , Animais , Camundongos , Peso Corporal , Homeostase , Metabolismo Energético
15.
J Neuroendocrinol ; 35(12): e13352, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37885347

RESUMO

We previously provided evidence supporting the existence of a novel leptin-independent body weight homeostat ("the gravitostat") that senses body weight and then initiates a homeostatic feed-back regulation of body weight. We, herein, hypothesize that this feed-back regulation involves a CNS mechanism. To identify populations of neurones of importance for the putative feed-back signal induced by increased loading, high-fat diet-fed rats or mice were implanted intraperitoneally or subcutaneously with capsules weighing ∼15% (Load) or ∼2.5% (Control) of body weight. At 3-5 days after implantation, neuronal activation was assessed in different parts of the brain/brainstem by immunohistochemical detection of FosB. Implantation of weighted capsules, both subcutaneous and intraperitoneal, induced FosB in specific neurones in the medial nucleus of the solitary tract (mNTS), known to integrate information about the metabolic status of the body. These neurones also expressed tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DbH), a pattern typical of norepinephrine neurones. In functional studies, we specifically ablated norepinephrine neurones in mNTS, which attenuated the feed-back regulation of increased load on body weight and food intake. In conclusion, increased load appears to reduce body weight and food intake via activation of norepinephrine neurones in the mNTS.


Assuntos
Norepinefrina , Núcleo Solitário , Ratos , Camundongos , Animais , Norepinefrina/metabolismo , Neurônios/metabolismo , Tronco Encefálico/metabolismo , Peso Corporal/fisiologia
16.
Proc Natl Acad Sci U S A ; 106(43): 18285-90, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19826081

RESUMO

Statins are compounds prescribed to lower blood cholesterol in millions of patients worldwide. They act by inhibiting HMG-CoA reductase, the rate-limiting enzyme in the mevalonate pathway that leads to the synthesis of farnesyl pyrophosphate, a precursor for cholesterol synthesis and the source of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C. elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER stress. UPR induction was also observed upon pharmacological inhibition of farnesyl transferases or RNAi inhibition of a specific isoprenoid transferase (M57.2) and found to be dependent on both ire-1 and xbp-1 but not on pek-1 or atf-6, which are all known regulators of the UPR. The lipid stores and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C. elegans. These results provide a mechanism for the pleiotropic effects of statins and suggest that statins could be used clinically where UPR activation may be of therapeutic benefit.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Geraniltranstransferase/antagonistas & inibidores , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/metabolismo , Fenótipo , Dobramento de Proteína/efeitos dos fármacos , Prenilação de Proteína/efeitos dos fármacos , Interferência de RNA , Especificidade por Substrato
17.
PLoS Med ; 8(11): e1001116, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22069379

RESUMO

BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction)  = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.


Assuntos
Predisposição Genética para Doença , Atividade Motora , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Tecido Adiposo/metabolismo , Adolescente , Adulto , Idoso , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Criança , Feminino , Genótipo , Humanos , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Fatores de Risco
18.
Nat Med ; 8(1): 75-9, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11786910

RESUMO

The immune-modulating cytokine interleukin-6 (IL-6) is expressed both in adipose tissue and centrally in hypothalamic nuclei that regulate body composition. We investigated the impact of loss of IL-6 on body composition in mice lacking the gene encoding IL-6 (Il6-/- mice) and found that they developed mature-onset obesity that was partly reversed by IL-6 replacement. The obese Il6-/- mice had disturbed carbohydrate and lipid metabolism, increased leptin levels and decreased responsiveness to leptin treatment. To investigate the possible mechanism and site of action of the anti-obesity effect of IL-6, we injected rats centrally and peripherally with IL-6 at low doses. Intracerebroventricular, but not intraperitoneal IL-6 treatment increased energy expenditure. In conclusion, centrally acting IL-6 exerts anti-obesity effects in rodents.


Assuntos
Interleucina-6/deficiência , Obesidade/genética , Fatores Etários , Animais , Glicemia/análise , Composição Corporal , Corticosterona/sangue , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Feminino , Teste de Tolerância a Glucose , Injeções Intraventriculares , Interleucina-6/genética , Interleucina-6/farmacologia , Leptina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Mutantes , Obesidade/etiologia , Fatores Sexuais
19.
Am J Clin Nutr ; 113(1): 123-128, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184646

RESUMO

BACKGROUND: Recent findings indicate that there is a body weight-sensing homeostatic regulation of body weight in postpubertal rodents and humans. It is possible that body weight sensing also might be involved in the regulation of pubertal timing. Although an early small study suggested that there is a critical body weight for pubertal timing in girls, most studies have focused on BMI and reported an inverse association between BMI and pubertal timing. OBJECTIVES: In the present longitudinal well-powered cohort study, we revisited the critical weight hypothesis and tested if prepubertal body weight is a more robust inverse predictor of pubertal timing than prepubertal BMI in boys. METHOD: We included men born during 1945-1961 (old cohort; n = 31,971) and men born during 1981-1996 (recent cohort; n = 1465) in the large BMI Epidemiology Study (BEST) Gothenburg (combined BEST cohort n = 33,436). Men with information on prepubertal body weight and BMI at 8 y of age and age at peak height velocity (PHV; an objective measure of pubertal timing) were included. RESULTS: Body weight explained more of the variance in age at PHV than BMI in both the old cohort and the recent cohort (combined cohort, body weight 6.3%, BMI 3.6%). Both body weight (ß: -0.24 SD/SD increase in weight; 95% CI: -0.25, -0.23) and BMI (ß: -0.18 SD/SD increase in BMI, 95% CI: -0.19, -0.17) were inversely associated with age at PHV but the association for body weight was significantly more pronounced than the association for BMI (P < 0.001). CONCLUSIONS: In conclusion, prepubertal body weight is a more robust inverse predictor of pubertal timing than prepubertal BMI in boys. We propose that body weight sensing constitutes a feedback mechanism to regulate pubertal timing.

20.
J Neuroendocrinol ; 33(8): e12997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240761

RESUMO

The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.


Assuntos
Tecido Adiposo/metabolismo , Homeostase/fisiologia , Obesidade , Aumento de Peso , Suporte de Carga/fisiologia , Animais , Manutenção do Peso Corporal/fisiologia , Dieta , Ingestão de Energia/fisiologia , Feminino , Masculino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA