Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568522

RESUMO

Training the respiratory muscles is a crucial aspect of pulmonary rehabilitation. The purpose of this study was to assess the function of respiratory muscles in older adults both before and after a period of pulmonary rehabilitation and treatment stay within the underground chambers of a salt mine. A total of 50 patients aged 65 years and older with chronic respiratory conditions was enrolled in the study. These participants underwent a 3-week subterranean pulmonary rehabilitation (PR) program in the "Wieliczka" Salt Mine. Levels of sniff nasal inspiratory pressure (SNIP), maximum inspiratory pressure (MIP), and maximum expiratory pressure (MEP) were measured using the MicroRPM both before and after the outpatient PR program conducted 135 m underground. A total of 44 patients with a mean age of 68.8 ± 2.9 years who completed the PR program and tests were included in the analysis. The average changes in the parameters of pulmonary function before and after the PR were: MIP 8.8 cmH2O, MEP 7.1 cmH2O, and SNIP 11.2 cmH2O (for p < 0.05). For patients older than 70 years, beneficial changes were only observed for MEP, which increased by 9.3 cmH2O (for p < 0.05). Speleotherapy combined with pulmonary rehabilitation improves respiratory muscle function in older adults with chronic respiratory diseases, mainly in terms of MEP. Therefore, a greater emphasis on inspiratory muscle training in the rehabilitation program should be considered.

2.
Sci Rep ; 13(1): 466, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627337

RESUMO

We present a method for the quantitative determination of the photon force (PF)-the force generated by the radiation pressure of photons reflected from the surface. We propose an experimental setup integrating innovative microelectromechanical system (MEMS) optimized for the detection of photon force (pfMEMS). An active microcantilever was used as the force detector, while the measurement was conducted in a closed-loop setup with electromagnetic force compensation. In opposition to our previous works, this measurement method provides quantitative not qualitative assessment of PF interaction. Final current-balance setup is suitable for light sources from tens of microwatts to few watts. In our article, we present the results of the performed experiments, in which we measured the PF interactions in the range up to 67.5 pN with resolution of 30 fN in the static measurement.


Assuntos
Fótons
3.
Ultramicroscopy ; 221: 113188, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321422

RESUMO

In this paper we describe the design, technology and application of a test and reference sample for calibration and characterization of scanning thermal microscopy (SThM) probes and systems. In our solution temperature field in thin film structure, which is being contacted with the thermal tip is controlled in the traceable manner. The developed technology, integrating plasma etching of Pt and chemical-mechanical planarization (CMP) processing, enabled manufacturing a nanosize 100 nm thick Pt resistor on SiO2 with topography profile below 10 nm. Four-point setup makes it possible to generate and measure (in other words control) a defined temperature field of such a structure. The size of the thermally active structure is big enough to enable reliable SThM measurements and small enough to reduce the parasitic heat transport between the surface and the cantilever platform. The proposed solution enables measurement of the output signal of the scanning thermal microscope measurement system when the temperature of the reference sample is varied in the quantitative way. Furthermore, basing on the determined sensitivity the assessment of the resolution capabilities is possible.

4.
Ultramicroscopy ; 193: 104-110, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29975873

RESUMO

In this paper we present design and application of novel piezoresistive scanning thermal microscopy (SThM) probes. The proposed probe integrates a piezoresistive deflection sensor and thermally active, resistive nanosize tip. Manufacturing technology includes standard silicon MEMS/CMOS processing and sophisticated postprocessing using Focus Ion Beam milling. Authors also describe dedicated measurement technique in order to perform quantitative nanoscale thermal probing. Performance of the developed thermal probes is validated by test scans (topography and temperature distribution) of silicon nanoresistors supplied with current.

5.
Bioelectrochemistry ; 66(1-2): 23-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15912602

RESUMO

Tremendous progress of microelectronic technology observed within last 40 years is closely related to even more remarkable progress of technological tools. It is important to note however, that these new tools may be used for fabrication of diverse multifunctional structures as well. Such devices, called MEMS (Micro-Electro-Mechanical-System) and MOEMS (Micro-Electro-Opto-Mechanical-System) integrate microelectronic and micromechanical structures in one system enabling interdisciplinary application, with most interesting and prospective being bio-medical investigations. Development of these applications requires however cooperation of multidisciplinary team of specialists, covering broad range of physics, (bio) chemistry and electronics, not mentioning medical doctors and other medical specialists. Thus, dissemination, of knowledge about existing processing capabilities is of key importance. In this paper, examples of various applications of microelectronic technology for fabrication of Microsystems which may be used for medicine and chemistry, will be presented. Besides, information concerning a design and technology potential available in poland and new, emerging opportunities will be given.


Assuntos
Microquímica/instrumentação , Nanotecnologia , Microeletrodos , Microscopia Eletrônica de Varredura , Nanotecnologia/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA