Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurosci ; 25(1): 18, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491350

RESUMO

Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.


Assuntos
Carbamatos , Isoflurano , Fenilenodiaminas , Ratos , Animais , Isoflurano/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico , Ratos Sprague-Dawley , Medetomidina/farmacologia , Nicotina/farmacologia
2.
Sci Rep ; 14(1): 13114, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849374

RESUMO

Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.


Assuntos
Potenciais Evocados Auditivos , Optogenética , Córtex Pré-Frontal , Tálamo , Animais , Optogenética/métodos , Ratos , Córtex Pré-Frontal/fisiologia , Masculino , Tálamo/fisiologia , Esquizofrenia/fisiopatologia , Vias Neurais , Ratos Sprague-Dawley , Ritmo Gama/fisiologia , Sistema Límbico/fisiologia
3.
J Neurosci Methods ; 408: 110155, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710233

RESUMO

BACKGROUND: Sleep physiology plays a critical role in brain development and aging. Accurate sleep staging, which categorizes different sleep states, is fundamental for sleep physiology studies. Traditional methods for sleep staging rely on manual, rule-based scoring techniques, which limit their accuracy and adaptability. NEW METHOD: We describe, test and challenge a workflow for unsupervised clustering of sleep states (WUCSS) in rodents, which uses accelerometer and electrophysiological data to classify different sleep states. WUCSS utilizes unsupervised clustering to identify sleep states using six features, extracted from 4-second epochs. RESULTS: We gathered high-quality EEG recordings combined with accelerometer data in diverse transgenic mouse lines (male ApoE3 versus ApoE4 knockin; male CNTNAP2 KO versus wildtype littermates). WUCSS showed high recall, precision, and F1-score against manual scoring on awake, NREM, and REM sleep states. Within NREM, WUCSS consistently identified two additional clusters that qualify as deep and light sleep states. COMPARISON WITH EXISTING METHODS: The ability of WUCSS to discriminate between deep and light sleep enhanced the precision and comprehensiveness of the current mouse sleep physiology studies. This differentiation led to the discovery of an additional sleep phenotype, notably in CNTNAP2 KO mice, showcasing the method's superiority over traditional scoring methods. CONCLUSIONS: WUCSS, with its unsupervised approach and classification of deep and light sleep states, provides an unbiased opportunity for researchers to enhance their understanding of sleep physiology. Its high accuracy, adaptability, and ability to save time and resources make it a valuable tool for improving sleep staging in both clinical and preclinical research.


Assuntos
Eletroencefalografia , Camundongos Transgênicos , Fases do Sono , Animais , Fases do Sono/fisiologia , Eletroencefalografia/métodos , Masculino , Camundongos , Análise por Conglomerados , Fluxo de Trabalho , Acelerometria/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/genética , Aprendizado de Máquina não Supervisionado
4.
Front Cell Neurosci ; 17: 1286552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145283

RESUMO

Introduction: Social behavioral changes are a hallmark of several neurodevelopmental and neuropsychiatric conditions, nevertheless the underlying neural substrates of such dysfunction remain poorly understood. Building evidence points to the prefrontal cortex (PFC) as one of the key brain regions that orchestrates social behavior. We used this concept with the aim to develop a translational rat model of social-circuit dysfunction, the chronic PFC activation model (CPA). Methods: Chemogenetic designer receptor hM3Dq was used to induce chronic activation of the PFC over 10 days, and the behavioral and electrophysiological signatures of prolonged PFC hyperactivity were evaluated. To test the sensitivity of this model to pharmacological interventions on longer timescales, and validate its translational potential, the rats were treated with our novel highly selective oxytocin receptor (OXTR) agonist RO6958375, which is not activating the related vasopressin V1a receptor. Results: CPA rats showed reduced sociability in the three-chamber sociability test, and a concomitant decrease in neuronal excitability and synaptic transmission within the PFC as measured by electrophysiological recordings in acute slice preparation. Sub-chronic treatment with a low dose of the novel OXTR agonist following CPA interferes with the emergence of PFC circuit dysfunction, abnormal social behavior and specific transcriptomic changes. Discussion: These results demonstrate that sustained PFC hyperactivity modifies circuit characteristics and social behaviors in ways that can be modulated by selective OXTR activation and that this model may be used to understand the circuit recruitment of prosocial therapies in drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA