Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311764

RESUMO

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Assuntos
Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Piramidais/metabolismo , Vasodilatação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
2.
J Neurosci ; 30(40): 13265-71, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926652

RESUMO

Learning a new goal-directed behavioral task often requires the improvement of at least two processes, including an enhanced stimulus-response association and an optimization of the execution of the motor response. The cerebellum has recently been shown to play a role in acquiring goal-directed behavior, but it is unclear to what extent it contributes to a change in the stimulus-response association and/or the optimization of the execution of the motor response. We therefore designed the stimulus-dependent water Y-maze conditioning task, which allows discrimination between both processes, and we subsequently subjected Purkinje cell-specific mutant mice to this new task. The mouse mutants L7-PKCi, which suffer from impaired PKC-dependent processes such as parallel fiber to Purkinje cell long-term depression (PF-PC LTD), were able to acquire the stimulus-response association, but exhibited a reduced optimization of their motor performance. These data show that PF-PC LTD is not required for learning a stimulus-response association, but they do suggest that a PKC-dependent process in cerebellar Purkinje cells is required for optimization of motor responses.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebelar/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Células de Purkinje/enzimologia , Animais , Córtex Cerebelar/citologia , Depressão Sináptica de Longo Prazo/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Movimento/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Regiões Promotoras Genéticas/genética , Proteína Quinase C/fisiologia , Natação/fisiologia
3.
Open Res Eur ; 1: 76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645091

RESUMO

With the advent of high-throughput biotechnological platforms and their ever-growing capacity, life science has turned into a digitized, computational and data-intensive discipline. As a consequence, standard analysis with a bioinformatics pipeline in the context of routine production has become a challenge such that the data can be processed in real-time and delivered to the end-users as fast as possible. The usage of workflow management systems along with packaging systems and containerization technologies offer an opportunity to tackle this challenge. While very powerful, they can be used and combined in many multiple ways which may differ from one developer to another. Therefore, promoting the homogeneity of the workflow implementation requires guidelines and protocols which detail how the source code of the bioinformatics pipeline should be written and organized to ensure its usability, maintainability, interoperability, sustainability, portability, reproducibility, scalability and efficiency. Capitalizing on Nextflow, Conda, Docker, Singularity and the nf-core initiative, we propose a set of best practices along the development life cycle of the bioinformatics pipeline and deployment for production operations which target different expert communities including i) the bioinformaticians and statisticians ii) the software engineers and iii) the data managers and core facility engineers. We implemented Geniac (Automatic Configuration GENerator and Installer for nextflow pipelines) which consists of a toolbox with three components: i) a technical documentation available at https://geniac.readthedocs.io to detail coding guidelines for the bioinformatics pipeline with Nextflow, ii) a command line interface with a linter to check that the code respects the guidelines, and iii) an add-on to generate configuration files, build the containers and deploy the pipeline. The Geniac toolbox aims at the harmonization of development practices across developers and automation of the generation of configuration files and containers by parsing the source code of the Nextflow pipeline.

4.
F1000Res ; 9: 240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913637

RESUMO

Life science has entered the so-called 'big data era' where biologists, clinicians and bioinformaticians are overwhelmed with high-throughput sequencing data. While they offer new insights to decipher the genome structure they also raise major challenges to use them for daily clinical practice care and diagnosis purposes as they are bigger and bigger. Therefore, we implemented a software to reduce the time to delivery for the alignment and the sorting of high-throughput sequencing data.  Our solution is implemented using Message Passing Interface and is intended for high-performance computing architecture. The software scales linearly with respect to the size of the data and ensures a total reproducibility with the traditional tools. For example, a 300X whole genome can be aligned and sorted within less than 9 hours with 128 cores. The software offers significant speed-up using multi-cores and multi-nodes parallelization.


Assuntos
Algoritmos , Metodologias Computacionais , Sequenciamento de Nucleotídeos em Larga Escala , Software , Genômica , Reprodutibilidade dos Testes
5.
Nat Commun ; 10(1): 2251, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113954

RESUMO

Cerebellar activity supported by PKC-dependent long-term depression in Purkinje cells (PCs) is involved in the stabilization of self-motion based hippocampal representation, but the existence of cerebellar processes underlying integration of allocentric cues remains unclear. Using mutant-mice lacking PP2B in PCs (L7-PP2B mice) we here assess the role of PP2B-dependent PC potentiation in hippocampal representation and spatial navigation. L7-PP2B mice display higher susceptibility to spatial map instability relative to the allocentric cue and impaired allocentric as well as self-motion goal-directed navigation. These results indicate that PP2B-dependent potentiation in PCs contributes to maintain a stable hippocampal representation of a familiar environment in an allocentric reference frame as well as to support optimal trajectory toward a goal during navigation.


Assuntos
Orientação Espacial/fisiologia , Células de Purkinje/fisiologia , Navegação Espacial/fisiologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Sinais (Psicologia) , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Plasticidade Neuronal/fisiologia , Percepção Espacial/fisiologia
6.
J Neurosci Methods ; 215(2): 196-209, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23507084

RESUMO

Spatial navigation calls upon mnemonic capabilities (e.g. remembering the location of a rewarding site) as well as adaptive motor control (e.g. fine tuning of the trajectory according to the ongoing sensory context). To study this complex process by means of behavioral measurements it is necessary to quantify a large set of meaningful parameters on multiple time scales (from milliseconds to several minutes), and to compare them across different paradigms. Moreover, the issue of automating the behavioral analysis is critical to cope with the consequent computational load and the sophistication of the measurements. We developed a general purpose Navigation Analysis Tool (NAT) that provides an integrated architecture consisting of a data management system (implemented in MySQL), a core analysis toolbox (in MATLAB), and a graphical user interface (in JAVA). Its extensive characterization of trajectories over time, from exploratory behavior to goal-oriented navigation with decision points using a wide range of parameters, makes NAT a powerful analysis tool. In particular, NAT supplies a new set of specific measurements assessing performances in multiple intersection mazes and allowing navigation strategies to be discriminated (e.g. in the starmaze). Its user interface enables easy use while its modular organization provides many opportunities of extension and customization. Importantly, the portability of NAT to any type of maze and environment extends its exploitation far beyond the field of spatial navigation.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Comportamento Exploratório/fisiologia , Aprendizagem em Labirinto/fisiologia , Percepção Espacial/fisiologia , Comportamento Espacial/fisiologia , Animais , Objetivos , Humanos , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA