Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159859

RESUMO

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Aldeído Redutase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Álcoois Graxos/metabolismo , Fermentação , Lactose/metabolismo , Engenharia Metabólica/métodos , Fosfatos Açúcares/metabolismo , Xilose/metabolismo
2.
Faraday Discuss ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836629

RESUMO

A scarcity of cofactors, necessary metabolites or substrates for in vivo enzymatic reactions, is among the major barriers for product synthesis in metabolically engineered cells. This work compares our recently developed cofactor-boosting strategy, which uses xylose reductase (XR) and lactose to increase the intracellular levels of reduced or oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), adenosine triphosphate (ATP) and acetyl coenzymeA (acetyl-CoA), with other previously reported methods. We demonstrated that the XR/lactose approach enhances levels of sugar alcohols and sugar phosphates, which leads to elevated levels of crucial cofactors required by specific metabolic pathways. The patterns of cofactor enhancement are not uniform and depend upon the specific pathway components that are overexpressed. We term this model the "user-pool" model. Here, we investigated metabolite alteration in the fatty-alcohol-producing system in the presence of XR/lactose within an early time frame (5 min after the bioconversion started). All metabolite data were analyzed using untargeted metabolomics. We found that the XR/lactose system could improve fatty-alcohol production as early as 5 min after the bioconversion started. The enhancement of key cofactors and intermediates, such as hexitol, NAD(P)H, ATP, 3-phosphoglycerate, acetyl-CoA, 6-phosphogluconate (6-PG) and glutathione, was consistent with those previously reported on a longer time scale (after 1 h). However, measurements performed at the early time reported here showed detectable differences in metabolite enhancement patterns, such as those of ATP, NADPH, acetyl-CoA and glutathione. These data could serve as a basis for future analysis of metabolic flux alteration by the XR/lactose system. Comparative analysis of the cofactor enhancement by XR and other methods suggests that XR/lactose can serve as a simple tool to increase levels of various cofactors for microbial cell factories.

3.
Arch Biochem Biophys ; 748: 109762, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739114

RESUMO

The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.


Assuntos
Antibacterianos , Riboswitch , Humanos , Mononucleotídeo de Flavina/metabolismo , Riboflavina/química , Flavina-Adenina Dinucleotídeo/metabolismo
4.
Arch Biochem Biophys ; 734: 109498, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572346

RESUMO

Aldehyde-deformylating oxygenase (ADO) is a non-heme di-iron enzyme that catalyzes the deformylation of aldehydes to generate alkanes/alkenes. In this study, we report for the first time that under anaerobic or limited oxygen conditions, Prochlorococcus marinus (PmADO) can generate full-length fatty alcohols from fatty aldehydes without eliminating a carbon unit. In contrast to ADO's native activity, which requires electrons from the Fd/FNR electron transfer complex, ADO's aldehyde reduction activity requires only NAD(P)H. Our results demonstrated that the yield of alcohol products could be affected by oxygen concentration and the type of aldehyde. Under strictly anaerobic conditions, yields of octanol were up to 31%. Moreover, metal cofactors are not involved in the aldehyde reductase activity of PmADO because the yields of alcohols obtained from apoenzyme and holoenzyme treated with various metals were similar under anaerobic conditions. In addition, PmADO prefers medium-chain aldehydes, specifically octanal (kcat/Km around 15 × 10-3 µM-1min-1). The findings herein highlight a new activity of PmADO, which may be applied as a biocatalyst for the industrial synthesis of fatty alcohols.


Assuntos
Aldeído Redutase , Cianobactérias , Álcoois Graxos , Oxigenases , Aldeídos , Oxigênio
5.
J Biol Chem ; 297(5): 101280, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624314

RESUMO

Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.


Assuntos
Acinetobacter baumannii/enzimologia , Cálcio/química , Frutose-Bifosfato Aldolase/química , Zinco/química , Proteínas de Bactérias , Catálise , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Especificidade por Substrato
6.
RNA ; 25(11): 1481-1496, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31399541

RESUMO

The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.


Assuntos
Pseudomonas aeruginosa/enzimologia , tRNA Metiltransferases/metabolismo , Catálise , Cristalografia por Raios X , Cinética , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/isolamento & purificação
7.
Nucleic Acids Res ; 47(17): 9271-9281, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31428787

RESUMO

Cellular response to oxidative stress is a crucial mechanism that promotes the survival of Pseudomonas aeruginosa during infection. However, the translational regulation of oxidative stress response remains largely unknown. Here, we reveal a tRNA modification-mediated translational response to H2O2 in P. aeruginosa. We demonstrated that the P. aeruginosa trmB gene encodes a tRNA guanine (46)-N7-methyltransferase that catalyzes the formation of m7G46 in the tRNA variable loop. Twenty-three tRNA substrates of TrmB with a guanosine residue at position 46 were identified, including 11 novel tRNA substrates. We showed that loss of trmB had a strong negative effect on the translation of Phe- and Asp-enriched mRNAs. The trmB-mediated m7G modification modulated the expression of the catalase genes katA and katB, which are enriched with Phe/Asp codons at the translational level. In response to H2O2 exposure, the level of m7G modification increased, consistent with the increased translation efficiency of Phe- and Asp-enriched mRNAs. Inactivation of trmB led to decreased KatA and KatB protein abundance and decreased catalase activity, resulting in H2O2-sensitive phenotype. Taken together, our observations reveal a novel role of m7G46 tRNA modification in oxidative stress response through translational regulation of Phe- and Asp-enriched genes, such as katA and katB.


Assuntos
Proteínas de Bactérias/genética , Catalase/genética , Estresse Oxidativo/genética , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Guanosina/genética , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , RNA de Transferência/efeitos dos fármacos , RNA de Transferência/genética
8.
Angew Chem Int Ed Engl ; 60(11): 5749-5753, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33247515

RESUMO

Most of the well-known enzymes catalyzing esterification require the minimization of water or activated substrates for activity. This work reports a new reaction catalyzed by carboxylic acid reductase (CAR), an enzyme known to transform a broad spectrum of carboxylic acids into aldehydes, with the use of ATP, Mg2+ , and NADPH as co-substrates. When NADPH was replaced by a nucleophilic alcohol, CAR from Mycobacterium marinum can catalyze esterification under aqueous conditions at room temperature. Addition of imidazole, especially at pH 10.0, significantly enhanced ester production. In comparison to other esterification enzymes such as acyltransferase and lipase, CAR gave higher esterification yields in direct esterification under aqueous conditions. The scalability of CAR catalyzed esterification was demonstrated for the synthesis of cinoxate, an active ingredient in sunscreen. The CAR esterification offers a new method for green esterification under high water content conditions.


Assuntos
Cinamatos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Cinamatos/química , Esterificação , Concentração de Íons de Hidrogênio , Estrutura Molecular , Mycobacterium marinum/enzimologia , Oxirredutases/química , Água/química , Água/metabolismo
9.
J Biol Chem ; 294(30): 11536-11548, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31182484

RESUMO

An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.


Assuntos
Alcanos/metabolismo , Formiato Desidrogenases/metabolismo , Engenharia Metabólica/métodos , Xanthobacter/metabolismo , Biocombustíveis , Catálise , Clonagem Molecular , Escherichia coli/genética , Ácidos Graxos/metabolismo , Formiato Desidrogenases/genética , NAD/metabolismo , Oxirredução , Xanthobacter/enzimologia
10.
J Biol Chem ; 294(27): 10490-10502, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118236

RESUMO

Human cytosolic serine hydroxymethyltransferase (hcSHMT) is a promising target for anticancer chemotherapy and contains a flexible "flap motif" whose function is yet unknown. Here, using size-exclusion chromatography, analytical ultracentrifugation, small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and ligand-binding and enzyme-kinetic analyses, we studied the functional roles of the flap motif by comparing WT hcSHMT with a flap-deleted variant (hcSHMT/Δflap). We found that deletion of the flap results in a mixture of apo-dimers and holo-tetramers, whereas the WT was mostly in the tetrameric form. MD simulations indicated that the flap stabilizes structural compactness and thereby enhances oligomerization. The hcSHMT/Δflap variant exhibited different catalytic properties in (6S)-tetrahydrofolate (THF)-dependent reactions compared with the WT but had similar activity in THF-independent aldol cleavage of ß-hydroxyamino acid. hcSHMT/Δflap was less sensitive to THF inhibition than the WT (Ki of 0.65 and 0.27 mm THF at pH 7.5, respectively), and the THF dissociation constant of the WT was also 3-fold lower than that of hcSHMT/Δflap, indicating that the flap is important for THF binding. hcSHMT/Δflap did not display the burst kinetics observed in the WT. These results indicate that, upon removal of the flap, product release is no longer the rate-limiting step, implying that the flap is important for controlling product release. The findings reported here improve our understanding of the functional roles of the flap motif in hcSHMT and provide fundamental insight into how a flexible loop can be involved in controlling the enzymatic reactions of hcSHMT and other enzymes.


Assuntos
Glicina Hidroximetiltransferase/química , Ligantes , Motivos de Aminoácidos , Sítios de Ligação , Estabilidade Enzimática , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo
11.
Nucleic Acids Res ; 44(22): 10834-10848, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683218

RESUMO

Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.


Assuntos
Proteínas de Bactérias/química , Estresse Oxidativo , Pseudomonas aeruginosa/enzimologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Peróxido de Hidrogênio/farmacologia , Metilação , Modelos Moleculares , Pseudomonas aeruginosa/efeitos dos fármacos , RNA Bacteriano/química , tRNA Metiltransferases/fisiologia
12.
Malar J ; 11: 339, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23043522

RESUMO

BACKGROUND: Blood samples collected in epidemiological and clinical investigations and then stored, often at room temperature, as blood spots dried on a filter paper have become one of the most popular source of material for further molecular analyses of malaria parasites. The dried blood spots are often archived so that they can be used for further retrospective investigations of parasite prevalence, or as new genetic markers come to the fore. However, the suitability of the template obtained from dried blood spots that have been stored for long periods for DNA amplification is not known. METHODS: DNA from 267 archived blood spots collected over a period of 12 years from persons with microscopically confirmed Plasmodium falciparum infection was purified by one of two methods, Chelex and Qiagen columns. These templates were subjected to highly sensitive nested PCR amplification targeting three parasite loci that differ in length and/or copy number. RESULTS: When a 1.6 kb fragment of the parasites' small subunit ribosomal RNA was targeted (primary amplification), the efficiency of P. falciparum detection decreased in samples archived for more than six years, reaching very low levels for those stored for more than 10 years. Positive amplification was generally obtained more often with Qiagen-extracted templates. P. falciparum could be detected in 32 of the 40 negative Qiagen-extracted templates when a microsatellite of about 180 bp was targeted. The remaining eight samples gave a positive amplification when a small region of 238 bp of the higher copy number (20 to 200) mitochondrial genome was targeted. CONCLUSIONS: The average length of DNA fragments that can be recovered from dried blood spots decreases with storage time. Recovery of the DNA is somewhat improved, especially in older samples, by the use of a commercial DNA purification column, but targets larger than 1.5 kb are unlikely to be present 10 years after the initial blood collection, when the average length of the DNA fragments present is likely to be around a few hundred bp. In conclusion, the utility of archived dried blood spots for molecular analyses decreases with storage time.


Assuntos
Sangue/parasitologia , Dessecação , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Preservação Biológica , Manejo de Espécimes/métodos , DNA de Protozoário/genética , Humanos , Fatores de Tempo
13.
Front Microbiol ; 13: 1079710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726575

RESUMO

Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.

14.
J Biotechnol ; 309: 1-19, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31866428

RESUMO

Hydrocarbons such as alkanes and alkenes are extensively used as organic compounds for combustion reactions and as building block components for the synthesis of numerous materials. Various synthetic enzymatic cascades and engineered metabolic pathways can be used to produce alkanes and alkenes from bio-based materials. An understanding of the native reactions and pathways used by various organisms to synthesize these compounds together with novel approaches in biocatalysis and synthetic biology have been instrumental in the development of methods to produce alkanes and alkenes with reasonable yield. This article discusses the present state of knowledge regarding hydrocarbon biosynthetic pathways and discusses current mechanistic understanding of relevant enzymatic reactions in cyanobacteria, aerobic bacteria, insects, algae, and plants. Recent advancements in metabolic engineering and process scale up for production of hydrocarbons from fatty acids are also discussed. This technology is important for sustainability, as it provides a clean and eco-friendly method for the future production of fuels and industrial materials. Further development towards whole cell biocatalysts that are able to provide good yield with a low production cost may allow countries without big oil reserves to be capable of producing precursors for the materials industries in the future.


Assuntos
Hidrocarbonetos/metabolismo , Engenharia Metabólica/métodos , Biologia Sintética/métodos , Alcanos/metabolismo , Animais , Bactérias/enzimologia , Bactérias/metabolismo , Biocatálise , Biocombustíveis/microbiologia , Vias Biossintéticas , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Insetos/metabolismo , Redes e Vias Metabólicas , Compostos Orgânicos/metabolismo , Plantas
15.
Nat Biomed Eng ; 4(12): 1140-1149, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32848209

RESUMO

Nucleic acid detection by isothermal amplification and the collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative PCR. Here, we report the clinical validation of the specific high-sensitivity enzymatic reporter unlocking (SHERLOCK) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes coronavirus disease 2019 (COVID-19)-in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per reaction, SHERLOCK was 100% specific and 100% sensitive with a fluorescence readout, and 100% specific and 97% sensitive with a lateral-flow readout. For the full range of viral load in the clinical samples, the fluorescence readout was 100% specific and 96% sensitive. For 380 SARS-CoV-2-negative pre-operative samples from patients undergoing surgery, SHERLOCK was in 100% agreement with quantitative PCR with reverse transcription. The assay, which we show is amenable to multiplexed detection in a single lateral-flow strip incorporating an internal control for ribonuclease contamination, should facilitate SARS-CoV-2 detection in settings with limited resources.


Assuntos
COVID-19/diagnóstico , Proteínas Associadas a CRISPR/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Leptotrichia/enzimologia , Pandemias/prevenção & controle
16.
PLoS One ; 11(8): e0161982, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560944

RESUMO

Pseudomonas aeruginosa ohrR and ospR are gene homologs encoding oxidant sensing transcription regulators. OspR is known to regulate gpx, encoding a glutathione peroxidase, while OhrR regulates the expression of ohr that encodes an organic peroxide specific peroxiredoxin. Here, we show that ospR mediated gpx expression, like ohrR and ohr, specifically responds to organic hydroperoxides as compared to hydrogen peroxide and superoxide anion. Furthermore, the regulation of these two systems is interconnected. OspR is able to functionally complement an ohrR mutant, i.e. it regulates ohr in an oxidant dependent manner. In an ohrR mutant, in which ohr is derepressed, the induction of gpx expression by organic hydroperoxide is reduced. Likewise, in an ospR mutant, where gpx expression is constitutively high, oxidant dependent induction of ohr expression is reduced. Moreover, in vitro binding assays show that OspR binds the ohr promoter, while OhrR binds the gpx promoter, albeit with lower affinity. The binding of OhrR to the gpx promoter may not be physiologically relevant; however, OspR is shown to mediate oxidant-inducible expression at both promoters. Interestingly, the mechanism of OspR-mediated, oxidant-dependent induction at the two promoters appears to be distinct. OspR required two conserved cysteines (C24 and C134) for oxidant-dependent induction of the gpx promoter, while only C24 is essential at the ohr promoter. Overall, this study illustrates possible connection between two regulatory switches in response to oxidative stress.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/genética , terc-Butil Hidroperóxido/farmacologia , Proteínas de Bactérias/metabolismo , Teste de Complementação Genética , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico
17.
Am J Trop Med Hyg ; 90(4): 609-611, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591439

RESUMO

Malaria infections in pregnancy are associated with adverse outcomes for both mother and child. There are few data on hyper-reactive malarial splenomegaly, an aberrant immunological response to chronic or recurrent malaria in pregnancy. This retrospective assessment reviewed the impact of mefloquine treatment on pregnant women with suspected hyper-reactive malarial splenomegaly in an area of low malaria transmission in the 1990s, showing significant reductions in spleen size and anemia and anti-malarial antibody titers without any notable negative effect on treated women or their newborns.


Assuntos
Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Mefloquina/uso terapêutico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Esplenomegalia/tratamento farmacológico , Adulto , Anticorpos Antiprotozoários/imunologia , Feminino , Humanos , Hiperesplenismo/tratamento farmacológico , Hiperesplenismo/etiologia , Hiperesplenismo/imunologia , Imunoglobulina M/imunologia , Malária/complicações , Malária/imunologia , Plasmodium/imunologia , Gravidez , Complicações Parasitárias na Gravidez/imunologia , Estudos Retrospectivos , Esplenomegalia/etiologia , Esplenomegalia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA