Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742857

RESUMO

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Assuntos
Cloreto de Alumínio , Flavanonas , Transtornos da Memória , Estresse Oxidativo , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Cloreto de Alumínio/toxicidade , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
J Biochem Mol Toxicol ; 36(10): e23165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35822592

RESUMO

Various studies suggested that neuroinflammation leads to the development of several neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Rotenone is an organic pesticide and potent inhibitor of complex I of electron transport chain widely used to develop the PD model. Numerous studies reported rotenone toxicity in the dopaminergic system but very few studies are available on rotenone-induced glial cell activation and subsequent neurodegeneration and alterations in various types of behavior. Therefore, the present study was designed to explore the effect of rotenone on neuroinflammation and its deleterious effect on the behavior of mice, and also how these effects can be protected through quercetin. Quercetin, a natural flavonoid having strong antioxidant and anti-inflammatory properties, is found in vegetables and fruits. The finding of the study indicated that rotenone 5 mg/kg body weight for 60 days through oral gavage leads to the release of inflammatory markers in blood serum, astrocytes activation in substantia nigra and hippocampus, and subsequently decreased density of dopaminergic fibers in the striatum. Rotenone also altered the memory of the mice as indicated by decreased spontaneous alteration in Y-maze and T-maze tests and reduction in exploration time in novel object recognition, increased immobility time in the forced swim test and reduced muscular strength. Co-treatment of quercetin 30 mg/kg/day through oral gavage for 60 days along with rotenone significantly reversed all these adverse effects, suggesting that quercetin could reduce neuroinflammation, and improve memory, and cognitive function.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Praguicidas , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Modelos Animais de Doenças , Dopamina , Camundongos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Quercetina/farmacologia , Rotenona/toxicidade
3.
J Biochem Mol Toxicol ; 34(1): e22416, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31714633

RESUMO

The present study investigated the protective effect of curcumin and mitochondrial-targeted curcumin (MTC) in rotenone-induced cerebellar toxicity in mice. Treatment of rotenone in mice significantly shortened the stride length for both forelimb and hind-limb and increased fore-paws and hind-limb base width. Co-treatment of curcumin and MTC with rotenone improved the walking pattern. A significant increase in lipid peroxidation, nitric oxide and decreased activity of AChE, reduced glutathione, superoxide dismutase and catalase were observed in rotenone-treated mice while co-treatment of curcumin and MTC with rotenone significantly increased AChE activity and protected against rotenone-induced oxidative damage. Rotenone exposed mice showed irregular, damaged Purkinje cells and perineuronal vacuolation while co-treatment of curcumin and MTC with rotenone protected against rotenone-induced cellular damage in these cells. The result exhibits that both curcumin and MTC showed protective effects against rotenone-induced cerebellar toxicity in mice and MTC is more effective than curcumin.


Assuntos
Cerebelo/efeitos dos fármacos , Curcumina/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Rotenona/farmacologia , Animais , Cerebelo/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Superóxido Dismutase/metabolismo
4.
Neurochem Int ; 178: 105799, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950625

RESUMO

Alumunium usage and toxicity has been a global concern especially an increased use of nanoparticulated aluminum (Al-NPs) products from the environment and the workplace. Al degrades in to nanoparticulate form in the environment due to the routine process of bioremediation in human body. Al-NPs toxicity plays key role in the pathophysiology of neurodegeneration which is characterised by the development of neurofibrillary tangles and neuritic plaques which correlates to the Alzheimer's disease. This study evaluated the Al-NPs induced neurodegeneration and causative behavioral alterations due to oxidative stress, inflammation, DNA damage, ß-amyloid aggregation, and histopathological changes in mice. Furthermore, the preventive effect of naringenin (NAR) as a potent neuroprotective flavonoid against Al-NPs induced neurodegeneration was assessed. Al-NPs were synthesized and examined using FTIR, XRD, TEM, and particle size analyzer. Mice were orally administered with Al-NPs (6 mg/kg b.w.) followed by NAR treatment (10 mg/kg b.w. per day) for 66 days. The spatial working memory was determined by novel object recognition, T-maze, Y-maze, and Morris Water Maze tests. We measured nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, oxidised glutathione, and acetylcholine esterase, as well as cytokines analysis, immunohistochemistry, and DNA damage. Al-NPs significantly reduced the learning memory power, increased oxidative stress, reduced antioxidant enzymatic activity, increased DNA damage, altered the levels of cytokines, and increased ß-amyloid aggregation in the cortex and hippocampus regions of the mice brain. These neurobehavioral impairments, neuronal oxidative stress, and histopathological alterations were significantly attenuated by NAR supplementation. In conclusion, Al-NPs may be potent neurotoxic upon exposure and that NAR could serve as a potential preventive measure in the treatment and management of neuronal degeneration.

5.
Toxicol Res ; 40(1): 97-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223678

RESUMO

Aluminum is a widely used metal substance in daily life activities that has been shown to cause severe hepato-nephrotoxicity with long-term exposure. Natural dietary flavonoids are being utilized as a newer pharmaceutical approach against various acute and chronic diseases. Naringenin (NAR) has shown efficient therapeutic properties, including effects against metal toxicities. However, the protective efficacy of NAR on aluminum chloride (AlCl3)-induced hepato-renal toxicity needs investigation as aluminum has shown serious environmental toxicity and bioaccumulation behavior. In this study, mice were treated with AlCl3 (10 mg/kg b.w./day) to assess toxicities, and a group of mice were co-treated with NAR (10 mg/kg b.w./day) to assess the protective effects of NAR against hepato-nephrotoxicity. The levels of blood serum enzymes, oxidative stress biomarkers, inflammatory cytokines, and the apoptosis marker caspase-3 were measured using histological examinations. NAR treatment in AlCl3-treated mice resulted in maintained levels of liver and kidney function enzymes and lipid profiles. NAR treatment attenuated oxidative stress by regulating the levels of nitric oxide, advance oxidation of protein products, protein carbonylation, and lipid peroxidation. NAR also replenished reduced antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and reduced the levels of glutathione and oxidized glutathione. NAR regulated the levels of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and elevated the levels of anti-inflammatory cytokines (IL-4, IL-10, and IFN-γ). The histological study further confirmed the protective effects of NAR against AlCl3-induced hepato-renal alterations. NAR decreased the expression of caspase-3 as a mechanism of protective effects against apoptotic damage in the liver and kidney of AlCl3-treated mice. In summary, this study demonstrated the antioxidant and anti-inflammatory properties of NAR, leading to the suppression of AlCl3-triggered hepato-renal apoptosis and histological alterations. The results suggest that aluminum toxicity needs to be monitored in daily life usage, and supplementation of the natural dietary flavonoid naringenin may help maintain liver and kidney health.

6.
Physiol Behav ; 279: 114527, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527577

RESUMO

The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/terapia , Coração , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Simpático , Frequência Cardíaca/fisiologia
7.
Syst Biol Reprod Med ; 69(5): 347-353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37204407

RESUMO

Environmental aluminum intoxication has shown increasingly alarming negative consequences on reproductive health. This needs mechanistic exploration and preventive management using medicines like herbal supplementation. The ameliorative effects of naringenin (NAR) against AlCl3-induced reproductive toxicity were thus evaluated in this study by assessing testicular dysfunction in albino male mice. A group of mice was treated with AlCl3 (10 mg/kg b.w./day) and then with NAR (10 mg/kg b.w./day) for a total of sixty-two days. Results show that treatment of AlCl3 significantly reduced the body weight and testis weight of mice. AlCl3 caused oxidative damage in mice as evidenced by an increase in the concentration of nitric oxide, advanced oxidation of protein product, protein carbonylation, and lipid peroxidation. Furthermore, diminished activity of antioxidant moieties included superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione. Several histological changes, such as spermatogenic cell degeneration, germinal epithelium detachment, and structural abnormalities in seminiferous tubules, were observed in AlCl3-treated mice. Oral administration of NAR was found to restore body weight and testes weight and ameliorated reproductive dysfunctions. NAR decreased oxidative stress, replenished the antioxidant defense system, and improved histopathological alterations in the AlCl3-treated testes. Therefore, the present study suggests that the supplementation of NAR may be a beneficial strategy to mitigate AlCl3-induced reproductive toxicity and testicular dysfunction.


Assuntos
Alumínio , Antioxidantes , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Estresse Oxidativo , Testículo/metabolismo , Peso Corporal
8.
Int J Dev Neurosci ; 83(6): 518-531, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337287

RESUMO

The environment is varying day by day with the introduction of chemicals such as pesticides, most of which have not been effectively studied for their influence on a susceptible group of population involving infants and pregnant females. Rotenone is an organic pesticide used to prepare Parkinson's disease models. A lot of literature is available on the toxicity of rotenone on the adult brain, but to the best of our knowledge, effect of rotenone on prenatally exposed mice has never been investigated yet. Therefore, the recent work aims to evaluate the toxic effect of rotenone on mice, exposed prenatally. We exposed female mice to rotenone at the dose of 5 mg/Kg b.w. throughout the gestational period with oral gavage. We then investigated the effects of rotenone on neonate's central nervous systems as well as on postnatal day (PD) 35 offspring. In the rotenone group, we observed slow physical growth, delays in physical milestones and sensorimotor reflex in neonates and induction of anxiety and impairment in cognitive performances of offspring at PD-35. Additionally, immunohistochemical analysis revealed a marked reduction in TH-positive neurons in substantia nigra. Histological examination of the cerebellum revealed a decrease in Purkinje neurons in the rotenone exposed group as compared to the control. The data from the study showed that prenatally exposure to rotenone affects growth, physical milestones, neuronal population and behaviour of mice when indirectly exposed to the offspring through their mother. This study could provide a great contribution to researchers to find out the molecular mechanism and participating signalling pathway behind these outcomes.


Assuntos
Praguicidas , Rotenona , Humanos , Gravidez , Animais , Camundongos , Feminino , Rotenona/toxicidade , Dopamina/metabolismo , Encéfalo/metabolismo , Reflexo
9.
Front Cell Infect Microbiol ; 12: 1042663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560927

RESUMO

Cervical cancer is a dreaded form of cancer in women, the fourth most common cancer, with around 0.3 million females suffering from this disease worldwide. Over the past several decades, global researches have focused on the mitigation of cervical lesions and cancers and have explored the impact of physiological and psychological stress and insomnia on cervical pathogenesis. Furthermore, disruption of the cervicovaginal microbiome profiles is identified as an added high-risk factor for the occurrence of cervical cancer. The physiological regulation of stress has an underlying mechanism controlled via hypothalamic pituitary adrenal (HPA) and sympatho-adrenal medullary (SAM) axes. Disruptions in these axes have been identified as the factors responsible for maintaining the homeostasis balance. Recent studies on microbiomes have offered novel ways to combat cervical cancer and cervix infection by exploring the interplay of the cervicovaginal microbiome. Moreover, the integration of various immune cells and microbiome diversity is known to act as an effective strategy to decipher the cervix biological activity. Cytokine profiling and the related immune competence, and physiological stress and insomnia impart to the regulatory networks underlying the mechanism which may be helpful in designing mitigation strategies. This review addressed the current progress in the research on cervical cancer, HPV infection, immune cell interaction, and physiological stress and insomnia with the cervicovaginal microbiome to decipher the disease occurrence and therapeutic management.


Assuntos
Microbiota , Distúrbios do Início e da Manutenção do Sono , Neoplasias do Colo do Útero , Feminino , Humanos , Distúrbios do Início e da Manutenção do Sono/complicações , Distúrbios do Início e da Manutenção do Sono/patologia , Colo do Útero , Fatores de Risco , Vagina
10.
Zebrafish ; 18(2): 110-124, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33728993

RESUMO

Alcoholism causes deleterious effects such as physiological and neuronal alterations leading to the cognitive and other behavioral impairments. Mitochondrial and synaptosomal deteriorations in the brain of alcoholic persons exhibited metabolic, biochemical changes and other related risk factors, which mainly affect the brain function. This study aimed to assess the effect of chronic alcohol-induced mitochondrial and synaptosomal oxidative damage along with behavioral impairment in adult zebrafish. Zebrafish of control group received the system water and normal diet ad libitum (group I); the other groups were treated with 0.20% alcohol (group II) and 0.40% alcohol (group III) directly in fish tank for 22 days. The result revealed significant increase in lipid peroxidation, protein carbonylation, superoxide dismutase, and glutathione, and significant decline in the activity of catalase and Na+/K+ ATPase compared to control. Furthermore, the alcohol-treated zebrafish also showed significant behavioral alterations. Collectively, this regulatory mechanism demonstrates the effect of long-term alcohol consumption in the zebrafish. Our results indicate that this recreational drug "alcohol" is harmful to brain mitochondria and synaptosomes, which are the main organelles, and play an important role in memory, learning, cognitive function, and ATP formation in the brain, which may represent a significant public health concern.


Assuntos
Sinaptossomos , Peixe-Zebra , Animais , Encéfalo/metabolismo , Peroxidação de Lipídeos , Mitocôndrias , Estresse Oxidativo , Sinaptossomos/metabolismo
11.
Daru ; 27(2): 557-570, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31264184

RESUMO

BACKGROUND: Mitochondrial impairments due to free radicals are implicated in a wide range of neurotoxicological alterations. Curcumin, an active ingredient of turmeric has shown protective efficacy against oxidative damage due to its strong antioxidant potential, but its efficiency is restricted due to low bioavailability in the mitochondria. In view of this, we have synthesized mitochondria-targeted curcumin (MTC) with an aim to investigate its efficacy against rotenone-induced oxidative damage in mice and isolated mitochondria. METHODS: MTC was synthesized by attaching the triphenylphosphonium cation (TPP) as a cationic carrier to the curcumin to assess its protective efficacy in rotenone-induced in-vitro and in-vivo toxicity in mice. RESULTS: In-vitro treatment of rotenone in isolated mitochondria caused a significant increase in lipid peroxidation (2.74 fold, 3.62 fold), protein carbonyl contents (2.62 fold, 1.81 fold), and decrease in levels of reduced glutathione (2.02 fold, 1.70 fold) as compared to control. Pre-treatment of curcumin and MTC along with rotenone in the isolated mitochondria significantly reduce the oxidative stress as compared to those treated with rotenone alone. Rotenone treatment in mice significantly increased lipid peroxidation (2.02 fold) and decreased the levels of reduced glutathione (2.99 fold), superoxide dismutase (2.09 fold) and catalase (3.60 fold) in the liver as compared to controls. Co-treatment of curcumin and MTC along with rotenone significantly reduced lipid peroxidation (1.26 fold, 1.76 fold) and increased the levels of reduced glutathione (1.60 fold, 2.43 fold), superoxide dismutase (1.45 fold, 1.99 fold) and catalase (2.32 fold, 2.90 fold) as compared to those treated with rotenone alone. CONCLUSION: The results of the present study indicate that the protective efficacy of MTC against rotenone-induced oxidative damage was more promising than curcumin in both in-vitro and in-vivo system which indicates the enhanced bioavailability of MTC. Graphical abstract Effect of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity.


Assuntos
Curcumina/síntese química , Curcumina/farmacologia , Mitocôndrias/química , Rotenona/efeitos adversos , Animais , Disponibilidade Biológica , Curcumina/química , Curcumina/farmacocinética , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Compostos Organofosforados/química , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA