RESUMO
Heavy metals (HMs) are ubiquitous; they are found in soil, water, air, and all biological matrices. The toxicity, bioaccumulation potential, and deleterious effects of most of these metals on humans and the environment have been widely documented. Consequently, the detection and quantification of HMs in various environmental samples have become a pressing issue. The analysis of the concentrations of HMs is a vital component of environmental monitoring; hence, the selection of the most suitable analytical technique for their determination has become a topic of great interest in food, environment, and human health safety. Analytical techniques for the quantification of these metals have evolved. Presently, a broad range of HM analytical techniques are available with each having its outstanding merits as well as limitations. Most analytical scientists, therefore, adopt complementation of more than one method, with the choice influenced by the specific metal of interest, desired limits of detection and quantification, nature of the interference, level of sensitivity, and precision among others. Sequel to the above, this work comprehensively reviews the most recent advances in instrumental techniques for the determination of HMs. It gives a general overview of the concept of HMs, their sources, and why their accurate quantification is pertinent. It highlights various conventional and more advanced techniques for HM determination, and as one of its kind, it also gives special attention to the specific merits and demerits of the analytical techniques. Finally, it presents the most recent studies in this regard.