Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082151

RESUMO

Noise generated by motion of charge and spin provides a unique window into materials at the atomic scale. From temperature of resistors to electrons breaking into fractional quasiparticles, "listening" to the noise spectrum is a powerful way to decode underlying dynamics. Here, we use ultrasensitive superconducting quantum interference device (SQUIDs) to probe the puzzling noise in a frustrated magnet, the spin-ice compound Dy2Ti2O7 (DTO), revealing cooperative and memory effects. DTO is a topological magnet in three dimensions-characterized by emergent magnetostatics and telltale fractionalized magnetic monopole quasiparticles-whose real-time dynamical properties have been an enigma from the very beginning. We show that DTO exhibits highly anomalous noise spectra, differing significantly from the expected Brownian noise of monopole random walks, in three qualitatively different regimes: equilibrium spin ice, a "frozen" regime extending to ultralow temperatures, and a high-temperature "anomalous" paramagnet. We present several distinct mechanisms that give rise to varied colored noise spectra. In addition, we identify the structure of the local spin-flip dynamics as a crucial ingredient for any modeling. Thus, the dynamics of spin ice reflects the interplay of local dynamics with emergent topological degrees of freedom and a frustration-generated imperfectly flat energy landscape, and as such, it points to intriguing cooperative and memory effects for a broad class of magnetic materials.

2.
Phys Rev Lett ; 130(10): 106703, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962046

RESUMO

Skyrmions are of interest both from a fundamental and technological point of view, due to their potential to act as information carriers. But one challenge concerns their manipulation, especially at high temperature where thermal fluctuations eventually disintegrate them. Here we study the competition between skyrmions and a chiral spin liquid, using the latter as an entropic buffer to impose a quasivacuum of skyrmions. As a result, the temperature becomes a knob to tune the skyrmion density from a dense liquid to a diluted gas, protecting the integrity of each skyrmion from paramagnetic disintegration. With this additional knob in hand, we find at high field a topological spin glass made of zero- and one-dimensional topological defects (respectively skyrmions and bimerons).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA