Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(11): 5086-5095, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808805

RESUMO

The lysosomal enzyme glucocerebrosidase-1 (GCase) catalyzes the cleavage of a major glycolipid glucosylceramide into glucose and ceramide. The absence of fully functional GCase leads to the accumulation of its lipid substrates in lysosomes, causing Gaucher disease, an autosomal recessive disorder that displays profound genotype-phenotype nonconcordance. More than 250 disease-causing mutations in GBA1, the gene encoding GCase, have been discovered, although only one of these, N370S, causes 70% of disease. Here, we have used a knowledge-based docking protocol that considers experimental data of protein-protein binding to generate a complex between GCase and its known facilitator protein saposin C (SAPC). Multiscale molecular-dynamics simulations were used to study lipid self-assembly, membrane insertion, and the dynamics of the interactions between different components of the complex. Deep learning was applied to propose a model that explains the mechanism of GCase activation, which requires SAPC. Notably, we find that conformational changes in the loops at the entrance of the substrate-binding site are stabilized by direct interactions with SAPC and that the loss of such interactions induced by N370S and another common mutation, L444P, result in destabilization of the complex and reduced GCase activation. Our findings provide an atomistic-level explanation for GCase activation and the precise mechanism through which N370S and L444P cause Gaucher disease.


Assuntos
Aprendizado Profundo , Doença de Gaucher/enzimologia , Doença de Gaucher/fisiopatologia , Glucosilceramidase/metabolismo , Simulação de Dinâmica Molecular , Domínio Catalítico , Ativação Enzimática , Glucosilceramidase/química , Humanos , Ligação de Hidrogênio , Proteínas Mutantes/química , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína , Saposinas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30941099

RESUMO

The traditional view of follicle-stimulating hormone (FSH) as a reproductive hormone is changing. It has been shown that FSH receptors (FSHRs) are expressed in various extra-gonadal tissues and mediate the biological effects of FSH at those sites. Molecular, animal, epidemiologic, and clinical data suggest that elevated serum FSH may play a significant role in the evolution of bone loss and obesity, as well as contributing to cardiovascular and cancer risk. This review summarizes recent data on FSH action beyond reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA