Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36236298

RESUMO

Internet availability and its integration with smart technologies have favored everyday objects and things and offered new areas, such as the Internet of Things (IoT). IoT refers to a concept where smart devices or things are connected and create a network. This new area has suffered from big data handling and security issues. There is a need to design a data analytics model by using new 5G technologies, architecture, and a security model. Reliable data communication in the presence of legitimate nodes is always one of the challenges in these networks. Malicious nodes are generating inaccurate information and breach the user's security. In this paper, a data analytics model and self-organizing architecture for IoT networks are proposed to understand the different layers of technologies and processes. The proposed model is designed for smart environmental monitoring systems. This paper also proposes a security model based on an authentication, detection, and prediction mechanism for IoT networks. The proposed model enhances security and protects the network from DoS and DDoS attacks. The proposed model evaluates in terms of accuracy, sensitivity, and specificity by using machine learning algorithms.


Assuntos
Ciência de Dados , Internet das Coisas , Algoritmos , Comunicação , Redes de Comunicação de Computadores
2.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015890

RESUMO

Unmanned Aerial Vehicle (UAV) deployment and placement are largely dependent upon the available energy, feasible scenario, and secure network. The feasible placement of UAV nodes to cover the cellular networks need optimal altitude. The under or over-estimation of nodes' air timing leads to of resource waste or inefficiency of the mission. Multiple factors influence the estimation of air timing, but the majority of the literature concentrates only on flying time. Some other factors also degrade network performance, such as unauthorized access to UAV nodes. In this paper, the UAV coverage issue is considered, and a Coverage Area Decision Model for UAV-BS is proposed. The proposed solution is designed for cellular network coverage by using UAV nodes that are controlled and managed for reallocation, which will be able to change position per requirements. The proposed solution is evaluated and tested in simulation in terms of its performance. The proposed solution achieved better results in terms of placement in the network. The simulation results indicated high performance in terms of high packet delivery, less delay, less overhead, and better malicious node detection.


Assuntos
Aeronaves , Dispositivos Aéreos não Tripulados , Altitude , Simulação por Computador
3.
Healthcare (Basel) ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200778

RESUMO

COVID-19 has made eHealth an imperative. The pandemic has been a true catalyst for remote eHealth solutions such as teleHealth. Telehealth facilitates care, diagnoses, and treatment remotely, making them more efficient, accessible, and economical. However, they have a centralized identity management system that restricts the interoperability of patient and healthcare provider identification. Thus, creating silos of users that are unable to authenticate themselves beyond their eHealth application's domain. Furthermore, the consumers of remote eHealth applications are forced to trust their service providers completely. They cannot check whether their eHealth service providers adhere to the regulations to ensure the security and privacy of their identity information. Therefore, we present a blockchain-based decentralized identity management system that allows patients and healthcare providers to identify and authenticate themselves transparently and securely across different eHealth domains. Patients and healthcare providers are uniquely identified by their health identifiers (healthIDs). The identity attributes are attested by a healthcare regulator, indexed on the blockchain, and stored by the identity owner. We implemented smart contracts on an Ethereum consortium blockchain to facilities identification and authentication procedures. We further analyze the performance using different metrics, including transaction gas cost, transaction per second, number of blocks lost, and block propagation time. Parameters including block-time, gas-limit, and sealers are adjusted to achieve the optimal performance of our consortium blockchain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA