Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 11(1): 156-9, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21133354

RESUMO

We report on p- and n-type organic self-assembled monolayer field effect transistors. On the base of quaterthiophene and fullerene units, multifunctional molecules were synthesized, which have the ability to self-assemble and provide multifunctional monolayers. The self-assembly approach, based on phosphonic acids, is very robust and allows the fabrication of functional devices even on larger areas. The p- and n-type transistor devices with only one molecular active layer were demonstrated for transistor channel lengths up to 10 µm. The monolayer composition is proven by electrical experiments and by high-resolution transmission electron microscopy, electron energy loss spectroscopy, XPS, and AFM experiments. Because of the molecular design and the contribution of isolating alkyl chains to the hybrid dielectric, our devices operate at low supply voltages (-4 V to +4 V), which is a key requirement for practical use and simplifies the integration in standard applications. The monolayer devices operate in ambient air and show hole and electron mobilities of 10(-5) cm(2)/(V s) and 10(-4) cm(2)/(V s) respectively. In particular the n-type operation of self-assembled monolayer transistors has not been reported before. Hereby, structure-property relations of the SAMs have been studied. Furthermore an approach to protect the sensitive C(60) from immediate degradation within the molecular design is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA