RESUMO
Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.
RESUMO
Oligomer acceptors in organic solar cells (OSCs) have garnered substantial attention owing to their impressive power conversion efficiency (PCE) and long-term stability. However, the simple and efficient synthesis of oligomer acceptors with higher glass transition temperatures (Tg ) remains a formidable challenge. In this study, we propose an innovative strategy for the synthesis of tetramers, denoted as Tet-n, with elevated Tg s, achieved through only two consecutive Stille coupling reactions. Importantly, our strategy significantly reduces the redundancy in reaction steps compared to conventional methods for linear tetramer synthesis, thereby improving both reaction efficiency and yield. Furthermore, the OSC based on PM6:Tet-1 attains a high PCE of 17.32 %, and the PM6:L8-BO:Tet-1 ternary device achieves an even more higher PCE of 19.31 %. Remarkably, the binary device based on the Tet-1 tetramer demonstrates outstanding operational stability, retaining 80 % of the initial efficiency (T80 ) even after 1706â h of continuous illumination, which is primarily attributed to the enhanced Tg (247 °C) and lower diffusion coefficient (1.56×10-27 â cm2 s-1 ). This work demonstrates the effectiveness of our proposed approach in the straightforward and efficient synthesis of tetramers materials with higher Tg s, thus offering a viable pathway for developing high-efficiency and stable OSCs.
RESUMO
Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.
RESUMO
Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.
RESUMO
Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.
RESUMO
Herein, we synthesized new hetero-halogenated end groups with well-determined fluorinated and chlorinated substitutions (o-FCl-IC and FClF-IC), and synthesized regioisomer-free small molecular acceptors (SMAs) Y-Cl, Y-FCl, and Y-FClF with distinct hetero-halogenated terminals, respectively. The single-crystal structures and theoretical calculations indicate that Y-FClF exhibits more compact three-dimensional network packing and more significant π-π electronic coupling compared to Y-FCl. From Y-Cl to Y-FCl to Y-FClF, the neat films exhibit a narrower optical band gap and gradually enhanced electron mobility and crystallinity. The PM6 : Y-FClF blend film exhibits the strongest crystallinity with preferential face-on molecular packing, desirable fibrous morphology with suitable phase segregation, and the highest and balanced charge mobilities among three blend films. Overall, the PM6 : Y-FClF organic solar cells (OSCs) deliver a remarkable efficiency of 17.65 %, outperforming the PM6 : Y-FCl and PM6 : Y-Cl, which is the best PCE for reported hetero-halogens-based SMAs in binary OSCs. Our results demonstrate that difluoro-monochloro hetero-terminal is a superior regio-regular unit for enhancing the intermolecular crystal packing and photovoltaic performance of hetero-halogenated SMAs.
RESUMO
High-performance organic solar cells often rely on halogen-containing solvents, which restrict the photovoltaic industry. Therefore, it is imperative to develop efficient organic photovoltaic materials compatible with halogen-free solvents. Herein, a series of benzo[a]phenazine (BP)-core-based small-molecule acceptors (SMAs) achieved through an isomerization chlorination strategy is presented, comprising unchlorinated NA1, 10-chlorine substituted NA2, 8-chlorine substituted NA3, and 7-chlorine substituted NA4. Theoretical simulations highlight NA3's superior orbit overlap length and tight molecular packing, attributed to interactions between the end group and BP unit. Furthermore, NA3 demonstrates dense 3D network structures and a record electronic coupling of 104.5 meV. These characteristics empower the ortho-xylene (o-XY) processed PM6:NA3 device with superior power conversion efficiency (PCE) of 18.94%, surpassing PM6:NA1 (15.34%), PM6:NA2 (7.18%), and PM6:NA4 (16.02%). Notably, the significantly lower PCE in the PM6:NA2 device is attributed to excessive self-aggregation characteristics of NA2 in o-XY. Importantly, the incorporation of D18-Cl into the PM6:NA3 binary blend enhances crystallographic ordering and increases the exciton diffusion length of the donor phase, resulting in a ternary device efficiency of 19.75% (certified as 19.39%). These findings underscore the significance of incorporating new electron-deficient units in the design of efficient SMAs tailored for environmentally benign solvent processing of OSCs.
RESUMO
Semi-transparent organic solar cells (ST-OSCs) possess significant potential for applications in vehicles and buildings due to their distinctive visual transparency. Conventional device engineering strategies are typically used to optimize photon selection and utilization at the expense of power conversion efficiency (PCE); moreover, the fixed spectral utilization range always imposes an unsatisfactory upper limit to its light utilization efficiency (LUE). Herein, a novel solid additive named 1,3-diphenoxybenzene (DB) is employed to dual-regulate donor/acceptor molecular aggregation and crystallinity, which effectively broadens the spectral response of ST-OSCs in near-infrared region. Besides, more visible light is allowed to pass through the devices, which enables ST-OSCs to possess satisfactory photocurrent and high average visible transmittance (AVT) simultaneously. Consequently, the optimal ST-OSC based on PP2+DB/BTP-eC9+DB achieves a superior LUE of 4.77%, representing the highest value within AVT range of 40-50%, which also correlates with the formation of multi-scale phase-separated morphology. Such results indicate that the ST-OSCs can simultaneously meet the requirements for minimum commercial efficiency and plant photosynthesis when integrated with the roofs of agricultural greenhouses. This work emphasizes the significance of additives to tune the spectral response in ST-OSCs, and charts the way for organic photovoltaics in economically sustainable agricultural development.
RESUMO
Recently, inverted perovskite solar cells (PeSCs) have witnessed significant advancements; however, their long-term stability remains a challenge because of the oxidation of silver cathodes to form AgI by mobile iodides. To overcome this problem, we propose the integration of an electron-deficient naphthalene diimide-based zwitterion (NDI-ZI) as the cathode interlayer. Compared to the physical ion-blocking layer, it effectively captures ions by forming ionic bonds via electrostatic Coulombic interaction to suppress the migration of iodide and Ag ions. The NDI-ZI interlayer also suppresses the shunt paths and modulates the work function of the Ag electrode by forming interface dipoles, thereby enhancing charge extraction. FA0.85Cs0.15PbI3 based PeSCs incorporating NDI-ZI exhibited a noticeably high power conversion efficiency of up to 23.3% and outstanding stability, maintaining â¼80% of their initial performance over 1500 h at 85 °C and over 500 h under continuous 1-sun illumination. This study highlights the potential of a zwitterionic cathode interlayer in diverse perovskite optoelectronic devices, leading to their improved efficiency and stability.
RESUMO
Morphology control greatly influences the power conversion efficiency (PCE) and long-term stability of all-polymer solar cells (all-PSCs); however, it remains challenging owing to their complex crystallization behavior. Herein, a small amount of Y6 (2 wt%) is introduced as a solid additive into a PM6:PY-DT blend. Y6 remained inside the active layer and interacted with PY-DT to form a well-mixed phase. Increased molecular packing, enlarged phase separation size, and decreased trap density are observed for the Y6-processed PM6:PY-DT blend. The corresponding devices showed simultaneously improved short-circuit current and fill factor, achieving a high PCE of over 18% and excellent long-term stability, with a T80 lifetime of 1180 h and an extrapolated T70 lifetime of 9185 h at maximum power point tracking (MPP) conditions under continuous one-sun illumination. This Y6-assisted strategy is successfully applied to other all-polymer blends, demonstrating its universality for all-PSCs. This work paves a new way for the fabrication of all-PSCs with high efficiency and superior long-term stability.
Assuntos
Bandagens , Polímeros , CristalizaçãoRESUMO
Although all-polymer solar cells (all-PSCs) show great commercialization prospects, their power conversion efficiencies (PCEs) still fall behind their small molecule acceptor-based counterparts. In all-polymer blends, the optimized morphology and high molecular ordering are difficult to achieve since there is troublesome competition between the crystallinity of the polymer donor and acceptor during the film-formation process. Therefore, it is challenging to improve the performance of all-PSCs. Herein, a ternary strategy is adopted to modulate the morphology and the molecular crystallinity of an all-polymer blend, in which PM6:PY-82 is selected as the host blend and PY-DT is employed as a guest component. Benefiting from the favorable miscibility of the two acceptors and the higher regularity of PY-DT, the ternary matrix features a well-defined fibrillar morphology and improved molecular ordering. Consequently, the champion PM6:PY-82:PY-DT device produces a record-high PCE of 18.03%, with simultaneously improved open-circuit voltage, short-circuit current and fill factor in comparison with the binary devices. High-performance large-area (1 cm2 ) and thick-film (300 nm) all-PSCs are also successfully fabricated with PCEs of 16.35% and 15.70%, respectively.Moreover, 16.5 cm2 organic solar module affords an encouraging PCE of 13.84% when using the non-halogenated solvent , showing the great potential of "Lab-to-Fab" transition of all-PSCs.
RESUMO
Recently, sequential layer-by-layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p-i-n vertical phase separation, efficient charge transport/extraction, and potential for lab-to-fab large-scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)-based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large-area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.
RESUMO
Selenium-heterocyclic and side-chain strategies for developing near-infrared (NIR) small fused-ring acceptors (FRAs) to further obtain short-circuit current density (Jsc) have proven advantageous in the top-performing polymer solar cells (PSCs). Herein, a new electron-rich central selenium-containing heterocycle core (BTSe) attaching alkyl side chains with a terminal phenyl group was coupled with a difluorinated and dichlorinated electron-accepting terminal 1,1-dicyanomethylene-3-indanone (IC) to afford two types of new FRAs, BTSe-IC2F and BTSe-IC2Cl. Interestingly, in spite of the weaker intramolecular charge transfer, BTSe-IC2F shows a stronger NIR response because of the smaller bandgap (Egopt) up to 1.26 eV, benefiting from the stronger ordered molecular packing in comparison to BTSe-IC2Cl with an Egopt of 1.30 eV. Additionally, thermal annealing induced an evident red shift by â¼50 nm in the absorption of D18:BTSe-IC2F blend films. Such a phenomenon may be attributed to the synergistic impact of the formation of inward constriction toward the molecular backbone because of the combination of bulky side chains and fluorinated IC as well as the reduced aromaticity of the selenium heterocycle. Consequently, the thermally annealed device based on BTSe-IC2F/D18 achieves a champion power conversion efficiency (PCE) of 17.3% with a high fill factor (FF) of 77.22%, which is among the highest reported PCE values for selenium-heterocyclic FRAs in binary PSCs. The improved Jsc and FF values of the D18:BTSe-IC2F film are simultaneously achieved mainly because of the preferred face-on orientations, the well-balanced electron/hole mobility, and the favorable blend morphology compared to D18:BTSe-IC2Cl. This work suggests that the selenium-heterocyclic fused-ring core (with proper side chains) combined with fluorinated terminal groups is an effective strategy for obtaining highly efficient NIR-responsive FRAs.