Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 78(9): 1916-1924, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30566095

RESUMO

Hydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e., dissolved oxygen below 0.1 mg L-1). However, the exact transformation pathways of sulfide under microaerobic conditions are still unclear. In this paper, batch experiments were performed to study biochemical and chemical sulfide oxidation under microaerobic conditions. The biochemical experiments were conducted using a strain of Sulfuricurvum kujiense. Under microaerobic conditions, the biochemical sulfide oxidation rate (in mg S L-1 d-1) was approximately 2.5 times faster than the chemical sulfide oxidation rate. Elemental sulfur was the major end-product of both biochemical and chemical sulfide oxidation. During biochemical sulfide oxidation elemental sulfur was in the form of white flakes, while during chemical sulfide oxidation elemental sulfur created a white suspension. Moreover, a mathematical model describing biochemical and chemical sulfide oxidation was developed and calibrated by the experimental results.


Assuntos
Sulfeto de Hidrogênio , Sulfetos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Reatores Biológicos , Cinética , Oxirredução
2.
Environ Sci Technol ; 51(19): 11029-11038, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28845968

RESUMO

Partial nitritation/anammox can provide energy-efficient nitrogen removal from the main stream of municipal wastewater. The main bottleneck is the growth of nitrite oxidizing bacteria (NOB) at low temperatures (<15 °C). To produce effluent suitable for anammox, real municipal wastewater after anaerobic pretreatment was treated by enriched ammonium oxidizing bacteria (AOB) in suspended sludge SBR at 12 °C. NOB were continually washed out using aerobic duration control strategy (ADCS). Solids retention time was set to 9-16 days. Using this approach, average ammonia conversion higher than 57% at high oxidation rate of 0.4 ± 0.1 kg-N kg-VSS-1 d-1 was achieved for more than 100 days. Nitrite accumulation (N-NO2-/N-NOX) of 92% was maintained. Thus, consistently small amounts of present NOB were efficiently suppressed. Our mathematical model explained how ADCS enhanced the inhibition of NOB growth via NH3 and HNO2. This approach will produce effluent suitable for anammox even under winter conditions in mild climates.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Nitritos , Nitrogênio , Esgotos
3.
Water Sci Technol ; 74(11): 2515-2522, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973356

RESUMO

Production of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. Although several norms and guidelines for BMP tests exist, inter-laboratory tests regularly show high variability of BMPs for the same substrate. A workshop was held in June 2015, in Leysin, Switzerland, with over 40 attendees from 30 laboratories around the world, to agree on common solutions to the conundrum of inconsistent BMP test results. This paper presents the consensus of the intense roundtable discussions and cross-comparison of methodologies used in respective laboratories. Compulsory elements for the validation of BMP results were defined. They include the minimal number of replicates, the request to carry out blank and positive control assays, a criterion for the test duration, details on BMP calculation, and last but not least criteria for rejection of the BMP tests. Finally, recommendations on items that strongly influence the outcome of BMP tests such as inoculum characteristics, substrate preparation, test setup, and data analysis are presented to increase the probability of obtaining validated and reproducible results.


Assuntos
Biocombustíveis/análise , Metano/análise , Anaerobiose , Biotecnologia/normas , Laboratórios/normas , Reprodutibilidade dos Testes
4.
Environ Technol ; 42(14): 2229-2239, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31763962

RESUMO

Anaerobic digestion of municipal sewage sludge is widely used for harvesting energy from wastewater organic content. The more organic carbon we can redirect into the primary sludge, the less energy is needed for aeration in secondary treatment and the more methane is produced in anaerobic digesters. Bioflocculation has been proposed as a promising separation technology to maximize carbon capture in primary sludge. Thus far, only limited data on bioflocculation are available under real conditions, i.e. from pilot-scale reactors treating raw sewage. Moreover, no study has discussed yet the influence of bioflocculation on denitrification potential of sewage. Therefore, we performed bioflocculation of raw sewage in high-rate contact stabilization process in pilot-scale to investigate maximal primary treatment efficiency. During 100 days of operation at sludge retention time of only 2 days, the average removal efficiencies of chemical oxygen demand (COD), suspended solids and total phosphorus were 75%, 87% and 51%, respectively, using no chemicals for precipitation. Up to 76% of incoming COD was captured in primary sludge and 46% for subsequent anaerobic digestion, where energy recovery potential achieved 0.33-0.37 g COD as CH4 per g COD of influent. This study showed in real conditions that this newly adapted separation process has significant benefits over chemically enhanced primary treatment, enabling sewage treatment process to overcome energy self-sufficiency.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Projetos Piloto , Esgotos
5.
Bioengineering (Basel) ; 3(2)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28952577

RESUMO

During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented.

6.
Bioresour Technol ; 172: 297-302, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25270045

RESUMO

The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge.


Assuntos
Bactérias Anaeróbias/fisiologia , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/isolamento & purificação , Metano/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Purificação da Água/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Sulfeto de Hidrogênio/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo
7.
Water Res ; 61: 191-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24922353

RESUMO

Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions.


Assuntos
Desnitrificação , Nitratos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Reatores Biológicos , Nitrogênio/química , Resíduos Sólidos , Enxofre/química , Eliminação de Resíduos Líquidos/economia
8.
Ultrason Sonochem ; 17(5): 923-31, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20219407

RESUMO

Hydrolytic enzymes released by the microorganisms in activated sludge are responsible for the organic matter degradation; however, the optimal extraction procedure of this valuable resource has not been well established until now. The present study evaluates the recovery of protease and lipase from the activated sludge by using stirring and ultrasonication, varying different parameters such as extraction time, concentration of additives (Triton X100, Cation Exchange Resin and Tris buffer), stirring velocity, ultrasonic power and sludge source. Sludge was collected from two urban wastewater treatment plants located in Prague (Czech Republic) and Reus (Spain). It was found that stirring using 2% v/v Triton X100 for 1h was enough to extract 57.4 protease units/g VSS, and that the same method using a combination of 10mM Tris pH 7.5+0.48 g/mL CER+0.5% TX100 as an additive allowed to extract 15.5 lipase units/g VSS from sludge collected from Reus Wastewater Treatment Plant. Ultrasonication allowed reducing the extraction time to 10 min for protease (using 2% v/v Triton X100 yielding 52.9 units/g VSS) and to 20 min for lipase (without any additive yielding nearly 21.4 units/g VSS), which makes this method appropriate for the extraction of enzymes from the activated sludge, and suitable to be scaled up for its application in the industry.


Assuntos
Lipase/química , Lipase/isolamento & purificação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Esgotos/química , Sonicação , Hidrólise , Lipase/efeitos da radiação , Peptídeo Hidrolases/efeitos da radiação
9.
J Magn Reson ; 200(2): 303-12, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656698

RESUMO

Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.7 5mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109x109x218 microm(3) and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/T(1)) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA](2-)) to penetrate into the methanogenic granules (3-4mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA](2-) in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient (D(ejf)) of [FeEDTA](2-) was found to be 2.8x10(-11)m(2)s(-1), i.e. approximately 4% of D(ejf) of [FeEDTA](2-) in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.


Assuntos
Biofilmes , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Teste de Materiais/métodos , Methanomicrobiaceae/citologia , Methanomicrobiaceae/metabolismo , Microscopia/métodos , Transporte Biológico Ativo/fisiologia , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA