Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(41): 25310-25318, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989146

RESUMO

The origin of diamonds in ureilite meteorites is a timely topic in planetary geology as recent studies have proposed their formation at static pressures >20 GPa in a large planetary body, like diamonds formed deep within Earth's mantle. We investigated fragments of three diamond-bearing ureilites (two from the Almahata Sitta polymict ureilite and one from the NWA 7983 main group ureilite). In NWA 7983 we found an intimate association of large monocrystalline diamonds (up to at least 100 µm), nanodiamonds, nanographite, and nanometric grains of metallic iron, cohenite, troilite, and likely schreibersite. The diamonds show a striking texture pseudomorphing inferred original graphite laths. The silicates in NWA 7983 record a high degree of shock metamorphism. The coexistence of large monocrystalline diamonds and nanodiamonds in a highly shocked ureilite can be explained by catalyzed transformation from graphite during an impact shock event characterized by peak pressures possibly as low as 15 GPa for relatively long duration (on the order of 4 to 5 s). The formation of "large" (as opposed to nano) diamond crystals could have been enhanced by the catalytic effect of metallic Fe-Ni-C liquid coexisting with graphite during this shock event. We found no evidence that formation of micrometer(s)-sized diamonds or associated Fe-S-P phases in ureilites require high static pressures and long growth times, which makes it unlikely that any of the diamonds in ureilites formed in bodies as large as Mars or Mercury.

2.
Meteorit Planet Sci ; 56(4): 844-893, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34295141

RESUMO

The June 2, 2018, impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. 23 meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as a HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g/cm3, a relatively low albedo pv ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth-impacting orbit via the v6 resonance. The impact that ejected 2018 LA in an orbit towards Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U-Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb-Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.

3.
Meteorit Planet Sci ; 55(11): 2341-2359, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33510569

RESUMO

The Hamburg meteorite fell on January 16, 2018, near Hamburg, Michigan, after a fireball event widely observed in the U.S. Midwest and in Ontario, Canada. Several fragments fell onto frozen surfaces of lakes and, thanks to weather radar data, were recovered days after the fall. The studied rock fragments show no or little signs of terrestrial weathering. Here, we present the initial results from an international consortium study to describe the fall, characterize the meteorite, and probe the collision history of Hamburg. About 1 kg of recovered meteorites was initially reported. Petrology, mineral chemistry, trace element and organic chemistry, and O and Cr isotopic compositions are characteristic of H4 chondrites. Cosmic ray exposure ages based on cosmogenic 3He, 21Ne, and 38Ar are ~12 Ma, and roughly agree with each other. Noble gas data as well as the cosmogenic 10Be concentration point to a small 40-60 cm diameter meteoroid. An 40Ar-39Ar age of 4532 ± 24 Ma indicates no major impact event occurring later in its evolutionary history, consistent with data of other H4 chondrites. Microanalyses of phosphates with LA-ICPMS give an average Pb-Pb age of 4549 ± 36 Ma. This is in good agreement with the average SIMS Pb-Pb phosphate age of 4535.3 ± 9.5 Ma and U-Pb Concordia age of 4535 ± 10 Ma. The weighted average age of 4541.6 ± 9.5 Ma reflects the metamorphic phosphate crystallization age after parent body formation in the early solar system.

4.
Proc Natl Acad Sci U S A ; 114(11): 2819-2824, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242686

RESUMO

The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.

5.
Planet Sci J ; 2(1)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33681766

RESUMO

Nucleosynthetic isotope anomalies show that the first few million years of solar system history were characterized by two distinct cosmochemical reservoirs, CC (carbonaceous chondrites and related differentiated meteorites) and NC (the terrestrial planets and all other groups of chondrites and differentiated meteorites), widely interpreted to correspond to the outer and inner solar system, respectively. At some point, however, bulk CC and NC materials became mixed, and several dynamical models offer explanations for how and when this occurred. We use xenoliths of CC materials in polymict ureilite (NC) breccias to test the applicability of such models. Polymict ureilites represent regolith on ureilitic asteroids but contain carbonaceous chondrite-like xenoliths. We present the first 54Cr isotope data for such clasts, which, combined with oxygen and hydrogen isotopes, show that they are unique CC materials that became mixed with NC materials in these breccias. It has been suggested that such xenoliths were implanted into ureilites by outer solar system bodies migrating into the inner solar system during the gaseous disk phase ~3-5 Myr after CAI, as in the "Grand Tack" model. However, combined textural, petrologic, and spectroscopic observations suggest that they were added to ureilitic regolith at ~50-60 Myr after CAI, along with ordinary, enstatite, and Rumuruti-type chondrites, as a result of breakup of multiple parent bodies in the asteroid belt at this time. This is consistent with models for an early instability of the giant planets. The C-type asteroids from which the xenoliths were derived were already present in inner solar system orbits.

6.
Minerals (Basel) ; 10(11): 1005, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33717603

RESUMO

The thermal history of carbon phases, including graphite and diamond, in the ureilite meteorites has implications for the formation, igneous evolution, and impact disruption of their parent body early in the history of the Solar System. Geothermometry data were obtained by micro-Raman spectroscopy on graphite in Almahata Sitta (AhS) ureilites AhS 72, AhS 209b and AhS A135A from the University of Khartoum collection. In these samples, graphite shows G-band peak centers between 1578 and 1585 cm-1 and the full width at half maximum values correspond to a crystallization temperature of 1266 °C for graphite for AhS 209b, 1242 °C for AhS 72, and 1332 °C for AhS A135A. Recent work on AhS 72 and AhS 209b has shown graphite associated with nanodiamonds and argued that this assemblage formed due to an impact-event. Our samples show disordered graphite with a crystalline domain size ranging between about 70 and 140 nm. The nanometric grain-size of the recrystallized graphite indicates that it records a shock event and thus argues that the temperatures we obtained are related to such an event, rather than the primary igneous processing of the ureilite parent body.

7.
Mon Not R Astron Soc ; 474(3): 4225-4231, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29545651

RESUMO

The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer mission orbited the Moon from 2013 October to 2014 April and detected impact ejecta generated by the continual bombardment of meteoroids to the lunar surface. While the Moon transited the Geminid meteoroid stream, LDEX observed a large enhancement in the lunar impact ejecta cloud, particularly above the portion of lunar surface normal to the Geminids radiant. Here, we present the LDEX measurements during the Geminids, using the surface density of impact ejecta at the Moon as a proxy for meteoroid activity. We find two peaks during the Geminids, a smaller peak at solar longitude λ⊙ = 261°.3 ± 0°.12 followed by a larger peak at λ⊙ = 262°.2 ± 0°.12, with a surface density ratio of 2.6 between the two. Both peaks coincide with radar observations of shallower mass indices than most of the Geminids, suggesting an enhancement of larger particles during the two peaks. The total duration of the 2013 Geminid meteoroid shower at the Moon measured by LDEX is Δλ⊙ = 1°.7 for activity >10 per cent of the peak value, corresponding to a width of 1.9 × 106 km normal to the Geminids velocity vector. The timing of the main observed peak matches ground-based visual observations of meteors with magnitude of -1 to -3 and suggests LDEX is detecting ejecta from primary impactors with radii ~2 mm to 2 cm during this time.

8.
Sci Am ; 307(3): 23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22928252
9.
Astrobiology ; 4(1): 95-108, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104906

RESUMO

Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.


Assuntos
Meteoroides , Compostos Orgânicos/química
10.
Astrobiology ; 4(1): 123-34, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104908

RESUMO

We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.


Assuntos
Hidrogênio/química , Meteoroides , Compostos Orgânicos , Água , Termodinâmica
11.
Astrobiology ; 4(1): 109-21, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104907

RESUMO

We report the discovery of the N(2)(+) A-X Meinel band in the 780-840 nm meteor emission from two Leonid meteoroids that were ejected less than 1000 years ago by comet 55P/Tempel-Tuttle. Our analysis indicates that the N(2)(+) molecule is at least an order of magnitude less abundant than expected, possibly as a result of charge transfer reactions with meteoric metal atoms. This new band was found while searching for rovibrational transitions in the X(2)Pi electronic ground state of OH (the OH Meinel band), a potential tracer of water bound to minerals in cometary matter. The electronic A-X transition of OH has been identified in other Leonid meteors. We did not detect this OH Meinel band, which implies that the excited A state is not populated by thermal excitation but by a mechanism that directly produces OH in low vibrational levels of the excited A(2)Sigma state. Ultraviolet dissociation of atmospheric or meteoric water vapor is such a mechanism, as is the possible combustion of meteoric organics.


Assuntos
Meteoroides , Águas Minerais , Raios Ultravioleta
12.
Astrobiology ; 4(1): 81-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104905

RESUMO

The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.


Assuntos
Ar , Meteoroides , Temperatura
13.
Astrobiology ; 4(1): 67-79, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15104904

RESUMO

Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.


Assuntos
Meteoroides , Compostos Orgânicos
14.
Science ; 342(6162): 1069-73, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24200813

RESUMO

The asteroid impact near the Russian city of Chelyabinsk on 15 February 2013 was the largest airburst on Earth since the 1908 Tunguska event, causing a natural disaster in an area with a population exceeding one million. Because it occurred in an era with modern consumer electronics, field sensors, and laboratory techniques, unprecedented measurements were made of the impact event and the meteoroid that caused it. Here, we document the account of what happened, as understood now, using comprehensive data obtained from astronomy, planetary science, geophysics, meteorology, meteoritics, and cosmochemistry and from social science surveys. A good understanding of the Chelyabinsk incident provides an opportunity to calibrate the event, with implications for the study of near-Earth objects and developing hazard mitigation strategies for planetary protection.


Assuntos
Acidentes , Ar , Explosões , Meteoroides , Federação Russa
15.
Science ; 338(6114): 1583-7, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23258889

RESUMO

Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA