Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Circulation ; 149(3): 227-250, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961903

RESUMO

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Assuntos
Insuficiência Cardíaca , Camundongos , Animais , Cardiomegalia/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ácidos Graxos/metabolismo
2.
J Mol Cell Cardiol ; 187: 101-117, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331556

RESUMO

AIMS: The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic ß-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS: We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic ß-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS: We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The ß-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS: Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.


Assuntos
Contração Miocárdica , Infarto do Miocárdio , Animais , Camundongos , Ácidos Graxos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Estresse Oxidativo , Receptores Adrenérgicos alfa 1/metabolismo
3.
Curr Oncol Rep ; 25(5): 455-463, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920637

RESUMO

PURPOSE OF REVIEW: Clonal hematopoiesis (CH) refers to the expansion of hematopoietic stem cell clones and their cellular progeny due to somatic mutations, mosaic chromosomal alterations (mCAs), or copy number variants which naturally accumulate with age. CH has been linked to increased risk of blood cancers, but CH has also been linked to adverse cardiovascular outcomes. RECENT FINDINGS: A combination of clinical outcome studies and mouse models have offered strong evidence that CH mutations either correlate with or cause atherosclerosis, diabetes mellitus, chronic kidney disease, heart failure, pulmonary hypertension, aortic aneurysm, myocardial infarction, stroke, aortic stenosis, poor outcomes following transcatheter aortic valve replacement (TAVR) or orthotopic heart transplant, death or need of renal replacement therapy secondary to cardiogenic shock, death from cardiovascular causes at large, and enhance anthracycline cardiac toxicity. Mechanistically, some adverse outcomes are caused by macrophage secretion of IL-1ß and IL-6, neutrophil invasion of injured myocardium, and T-cell skewing towards inflammatory phenotypes. CH mutations lead to harmful inflammation and arterial wall invasion by bone marrow-derived cells resulting in poor cardiovascular health and outcomes. Blockade of IL-1ß or JAK2 signaling are potential avenues for preventing CH-caused cardiovascular morbidity and mortality.


Assuntos
Aterosclerose , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mutação
4.
J Biol Chem ; 297(6): 101358, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756888

RESUMO

Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here, we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that cardiomyocyte mitochondria in staggerer mice with lack of functional RORα were less numerous and exhibited fewer mitophagy events than those in WT controls. The hearts of our novel cardiomyocyte-specific RORα KO mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis, and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte mitochondria in "staggerer" mice with lack of functional RORα were upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.


Assuntos
Caveolina 3/fisiologia , Mitocôndrias Cardíacas/fisiologia , Mitofagia/fisiologia , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Camundongos , Mitocôndrias Cardíacas/metabolismo
5.
J Synchrotron Radiat ; 29(Pt 3): 876-887, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511021

RESUMO

The diffraction endstation of the NanoMAX beamline is designed to provide high-flux coherent X-ray nano-beams for experiments requiring many degrees of freedom for sample and detector. The endstation is equipped with high-efficiency Kirkpatrick-Baez mirror focusing optics and a two-circle goniometer supporting a positioning and scanning device, designed to carry a compact sample environment. A robot is used as a detector arm. The endstation, in continued development, has been in user operation since summer 2017.

6.
J Cardiovasc Pharmacol ; 80(3): 364-377, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170492

RESUMO

ABSTRACT: Adrenergic receptors (ARs) are G protein-coupled receptors that are stimulated by catecholamines to induce a wide array of physiological effects across tissue types. Both α1- and ß-ARs are found on cardiomyocytes and regulate cardiac contractility and hypertrophy through diverse molecular pathways. Acute activation of cardiomyocyte ß-ARs increases heart rate and contractility as an adaptive stress response. However, chronic ß-AR stimulation contributes to the pathobiology of heart failure. By contrast, mounting evidence suggests that α1-ARs serve protective functions that may mitigate the deleterious effects of chronic ß-AR activation. Here, we will review recent studies demonstrating that α1- and ß-ARs differentially regulate mitochondrial biogenesis and dynamics, mitochondrial calcium handling, and oxidative phosphorylation in cardiomyocytes. We will identify potential mechanisms of these actions and focus on the implications of these findings for the modulation of contractile function in the uninjured and failing heart. Collectively, we hope to elucidate important physiological processes through which these well-studied and clinically relevant receptors stimulate and fuel cardiac contraction to contribute to myocardial health and disease.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Agonistas Adrenérgicos beta/farmacologia , Mitocôndrias , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/metabolismo
7.
J Biol Chem ; 295(13): 4265-4276, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32075913

RESUMO

Recent clinical investigations indicate that anthracycline-based chemotherapies induce early decline in heart mass in cancer patients. Heart mass decline may be caused by a decrease in cardiac cell number because of increased cell death or by a reduction in cell size because of atrophy. We previously reported that an anthracycline, doxorubicin (DOX), induces apoptotic death of cardiomyocytes by activating cyclin-dependent kinase 2 (CDK2). However, the signaling pathway downstream of CDK2 remains to be characterized, and it is also unclear whether the same pathway mediates cardiac atrophy. Here we demonstrate that DOX exposure induces CDK2-dependent phosphorylation of the transcription factor forkhead box O1 (FOXO1) at Ser-249, leading to transcription of its proapoptotic target gene, Bcl-2-interacting mediator of cell death (Bim). In cultured cardiomyocytes, treatment with the FOXO1 inhibitor AS1842856 or transfection with FOXO1-specific siRNAs protected against DOX-induced apoptosis and mitochondrial damage. Oral administration of AS1842856 in mice abrogated apoptosis and prevented DOX-induced cardiac dysfunction. Intriguingly, pharmacological FOXO1 inhibition also attenuated DOX-induced cardiac atrophy, likely because of repression of muscle RING finger 1 (MuRF1), a proatrophic FOXO1 target gene. In conclusion, DOX exposure induces CDK2-dependent FOXO1 activation, resulting in cardiomyocyte apoptosis and atrophy. Our results identify FOXO1 as a promising drug target for managing DOX-induced cardiotoxicity. We propose that FOXO1 inhibitors may have potential as cardioprotective therapeutic agents during cancer chemotherapy.


Assuntos
Atrofia/genética , Cardiotoxicidade/genética , Quinase 2 Dependente de Ciclina/genética , Proteína Forkhead Box O1/genética , Proteínas Musculares/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/efeitos dos fármacos , Atrofia/induzido quimicamente , Atrofia/patologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Doxorrubicina/efeitos adversos , Proteína Forkhead Box O1/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Quinolonas/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Heart Circ Physiol ; 320(2): H725-H733, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275531

RESUMO

α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than ß1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.


Assuntos
Doenças Cardiovasculares/metabolismo , Coração/inervação , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervoso Simpático/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/efeitos adversos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Transdução de Sinais , Sistema Nervoso Simpático/fisiopatologia
9.
J Synchrotron Radiat ; 28(Pt 6): 1935-1947, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738949

RESUMO

NanoMAX is the first hard X-ray nanoprobe beamline at the MAX IV laboratory. It utilizes the unique properties of the world's first operational multi-bend achromat storage ring to provide an intense and coherent focused beam for experiments with several methods. In this paper we present the beamline optics design in detail, show the performance figures, and give an overview of the surrounding infrastructure and the operational diffraction endstation.

10.
Circ Res ; 124(1): 101-113, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582443

RESUMO

RATIONALE: Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE: To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS: Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS: AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.


Assuntos
Adrenomedulina/metabolismo , Conexina 43/metabolismo , Edema Cardíaco/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Pericárdio/metabolismo , Adrenomedulina/genética , Animais , Células Cultivadas , Conexina 43/genética , Modelos Animais de Doenças , Edema Cardíaco/genética , Edema Cardíaco/fisiopatologia , Edema Cardíaco/prevenção & controle , Feminino , Junções Comunicantes/metabolismo , Humanos , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Pericárdio/fisiopatologia , Transdução de Sinais , Função Ventricular Esquerda
11.
J Synchrotron Radiat ; 27(Pt 2): 262-271, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153265

RESUMO

With the introduction of the multi-bend achromats in the new fourth-generation storage rings the emittance has decreased by an order of magnitude resulting in increased brightness. However, the higher brightness comes with smaller beam sizes and narrower radiation cones. As a consequence, the requirements on mechanical stability regarding the beamline components increases. Here an innovative five-axis parallel kinematic mirror unit for use with soft X-ray beamlines using off-axis grazing-incidence optics is presented. Using simulations and measurements from the HIPPIE beamline at the MAX IV Laboratory it is shown that it has no Eigen frequencies below 90 Hz. Its positioning accuracy is better than 25 nm linearly and 17-35 µrad angularly depending on the mirror chamber dimensions.

12.
J Synchrotron Radiat ; 27(Pt 5): 1415-1429, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876619

RESUMO

BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 µm × 5 µm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 µm × 1 µm beam focus and a flux up to 1015 photons s-1 with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.

13.
Photochem Photobiol Sci ; 19(10): 1382-1391, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869822

RESUMO

The solvatochromic fluorophore Nile Red, 9-diethylamino-5H-benzo[a]phenoxazine-5-one, is one of the most commonly used stains to enhance contrast of lipid-rich areas of microscopic biosamples. Quite surprisingly, relatively little is known about the spectrally-resolved two-photon absorption (2PA) properties of this dye despite its promising features for two-photon microscopy of biological matter. For this reason, the two-photon solvatochromism of Nile Red still remains an uncharted territory as well. Also, no study has yet reported on how electron-withdrawing substituents attached to the Nile Red backbone affect its solvatochromic properties and two-photon brightness. In this paper, we demonstrate how solvent polarity influences the one- and two-photon absorption spectra of Nile Red as well as its fluorescence parameters, and we present new analogues that contain -CF3, -F and -Br substituents on its eastern side. Two-photon excited fluorescence experiments in a broad spectral range (780-1240 nm) and electronic structure calculations show that both the nature and location of the substituent have particular influence on the strength of 2PA, peaking in all cases at approx. 860 and 1050 nm. 2PA cross sections are higher at 1050 nm than at 860 nm, which suggests that Nile Red and its analogues are best suited for two-photon imaging employing excitation in the NIR-II optical transparency window of biological tissues.


Assuntos
Corantes Fluorescentes/química , Hidrocarbonetos Halogenados/química , Oxazinas/química , Fótons , Teoria da Densidade Funcional , Estrutura Molecular , Espectrometria de Fluorescência
14.
Am J Physiol Heart Circ Physiol ; 316(1): H186-H200, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387679

RESUMO

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the "staggerer" (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Mutação com Perda de Função , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Angiotensina II/toxicidade , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
15.
Mamm Genome ; 30(1-2): 42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30515527

RESUMO

The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

16.
Heart Fail Rev ; 24(2): 167-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565021

RESUMO

Sacubitril/valsartan is a first-in-class angiotensin receptor-neprilysin inhibitor (ARNI) that has been recommended in clinical practice guidelines to reduce morbidity and mortality in patients with chronic, symptomatic heart failure (HF) with reduced ejection fraction (HFrEF). This review provides an overview of ARNI therapy, proposes strategies to improve the implementation of sacubitril/valsartan in clinical practice, and provides clinicians with evidence-based, practical guidance on the use of sacubitril/valsartan in patients with HFrEF. Despite evidence demonstrating the benefits of ARNI therapy over standard of care, only a fraction of eligible patients takes sacubitril/valsartan. Barriers preventing the prescription of sacubitril/valsartan in eligible patients may include practitioners' unfamiliarity with ARNIs, safety concerns, and payer reimbursement issues. The optimal implementation of sacubitril/valsartan in clinical practice has the potential to reduce the overall burden of HF. Throughout this review, we describe our experience with sacubitril/valsartan, including strategies for the management of adverse events and common patient concerns. In addition, a strategy for the gradual introduction of sacubitril/valsartan using a treatment sequence scheme is proposed.


Assuntos
Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Tetrazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Aminobutiratos/efeitos adversos , Antagonistas de Receptores de Angiotensina/efeitos adversos , Compostos de Bifenilo , Comorbidade , Efeitos Psicossociais da Doença , Combinação de Medicamentos , Medicina Baseada em Evidências , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Pessoa de Meia-Idade , Morbidade/tendências , Mortalidade/tendências , Guias de Prática Clínica como Assunto , Volume Sistólico/efeitos dos fármacos , Tetrazóis/efeitos adversos , Resultado do Tratamento , Valsartana , Disfunção Ventricular Esquerda/fisiopatologia
17.
Mamm Genome ; 29(1-2): 80-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29279960

RESUMO

Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.


Assuntos
Variação Genética , Coração/anatomia & histologia , Tamanho do Órgão/genética , Locos de Características Quantitativas/genética , Animais , Colesterol/genética , Colesterol/metabolismo , Mapeamento Cromossômico , Dieta/efeitos adversos , Feminino , Genômica , Genótipo , Haplótipos , Masculino , Camundongos , Fenótipo
18.
J Synchrotron Radiat ; 25(Pt 5): 1291-1316, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179168

RESUMO

The MAX IV 3 GeV electron storage ring in Lund, Sweden, is the first of a new generation of light sources to make use of the multibend-achromat lattice (MBA) to achieve ultralow emitance and hence ultrahigh brightness and transverse coherence. The conceptual basis of the MAX IV 3 GeV ring project combines a robust lattice design with a number of innovative engineering choices: compact, multifunctional magnet blocks, narrow low-conductance NEG-coated copper vacuum chambers and a 100 MHz radio-frequency system with passively operated third-harmonic cavities for bunch lengthening. In this paper, commissioning and first-year operational results of the MAX IV 3 GeV ring are presented, highlighting those aspects that are believed to be most relevant for future MBA-based storage rings. The commissioning experience of the MAX IV 3 GeV ring offers in this way an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources.

19.
Am J Pathol ; 187(12): 2895-2911, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29153655

RESUMO

Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27-0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31-0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD.


Assuntos
Quimiocina CXCL5/sangue , Doença da Artéria Coronariana/sangue , Idoso , Quimiocina CXCL5/genética , Doença da Artéria Coronariana/genética , Feminino , Humanos , Masculino
20.
Lung ; 196(3): 315-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29564533

RESUMO

BACKGROUND: Plasma pro-BNP (brain natriuretic peptide) levels are often elevated in response to right ventricular (RV) volume and pressure overload, parameters potentially affected by exercise. Plasma pro-BNP levels change in association with long-term changes in pulmonary hemodynamics, thereby serving as a potential biomarker in pulmonary arterial hypertension (PAH). The 6-min Walk Test (6MWT) and pro-BNP level are often checked in a single office visit. There is no universal standard for measuring Pro-BNP levels relative to the timing of the 6MWT. Based on the studies in normal subjects indicating that pro-BNP levels changes after exercise, we hypothesized that the pro-BNP might rise after the 6MWT in PAH patients, potentially impacting clinical decisions. METHODS: Patients at our center with WHO Group 1 PAH on active therapy at a stable dose for 30 days or more were enrolled. After resting the patient for 30 min, blood was drawn for baseline pro-BNP and a 6MWT was performed. Pro-BNP levels were drawn immediately after the 6MWT and 1 and 2 h later. Pro-BNP was measured using a commercially available ELISA kit. The levels before exercise and after exercise were compared using student's paired t tests. RESULTS: There were 17 females and 3 male subjects. The mean age was 53 ± 11 years. Seven patients had systemic lupus erythematosus-related PAH, six had idiopathic PAH, three had scleroderma, three had portopulmonary hypertension, and one had HIV-related PAH. The mean PA pressure was 50 ± 15 mmHg with a mean pulmonary vascular resistance of 10 ± 4 Wood units. The majority of the patients were on multimodality PAH therapy, including parenteral prostacyclins. Mean 6MWT distance was 377 ± 140 m. In 14/20 patients, the pro-BNP level increased immediately after the 6MWT; in 12/20 patients, the pro-BNP level was elevated at 1 h post exercise. In the majority of the patients, the pro-BNP fell to baseline 2 h post 6MWT. CONCLUSION: There appears to be a trend of pro-BNP level increasing immediately after exercise and continuing to be elevated at 1 h. Pro-BNP levels then return to baseline at 2 h post 6MWT.


Assuntos
Hipertensão Pulmonar/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Teste de Caminhada , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA