Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag ; 138: 210-218, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902683

RESUMO

The focus of the study was to determine the suitability of cattle feedlot manure originating from clay-pack feedlots as a possible feedstock material for dry batch anaerobic digestion. Oedometer tests were carried out that measure the permeability and compressibility of the feedstock under practical conditions experienced in large-scale dry batch anaerobic digestion plants. Material characterization tests showed that feedlot manure was impermeable under compression and therefore unsuitable for percolation. Mixtures of feedlot manure, wood chips (3 %ww) and wheat straw (6 %ww) showed superior permeability under compression compared to feedlot manure alone with an 56% increased permeability. Further practical tests showed that dry digestion of feedlot manure mixtures led to methane yields of 99 mL/g VS which equals 86% of the material biochemical methane potential (BMP). High percolation rate and low inoculum recycle led to the highest specific methane yield (SMY) and digester productivity with implications on process design to reduce capital investment costs.


Assuntos
Biocombustíveis , Esterco , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Metano
2.
Bioengineering (Basel) ; 7(3)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906720

RESUMO

Chicken manure is an agricultural residue material with a high biomass potential. The energetical utilization of this feedstock via anaerobic digestion is an interesting waste treatment option. One waste treatment technology most appropriate for the treatment of stackable (non-free-flowing) dry organic waste materials is the dry batch anaerobic digestion process. The aim of this study was to evaluate the substrate suitability of chicken manure from various sources as feedstock for percolation processes. Chicken manure samples from different housing forms were investigated for their chemical and physical material properties, such as feedstock composition, permeability under compaction and material compressibility. The permeability under compaction of chicken manure ranged from impermeable to sufficiently permeable depending on the type of chicken housing, manure age and bedding material used. Porous materials, such as straw and woodchips, were successfully tested as substrate additives with the ability to enhance material mixture properties to yield superior permeability and allow sufficient percolation. In dry anaerobic batch digestion trials at lab scale, the biogas generation of chicken manure with and without any structure material addition was investigated. Digestion trials were carried out without solid inoculum addition and secondary methanization of volatile components. The specific methane yield of dry chicken manure was measured and found to be 120 to 145 mL/g volatile solids (VS) and 70 to 75 mL/g fresh matter (FM), which represents approximately 70% of the methane potential based on fresh mass of common energy crops, such as corn silage.

3.
Animals (Basel) ; 10(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392701

RESUMO

Liquid manure is a significant source of methane (CH4), a greenhouse gas. Many livestock farms use manure additives for practical and agronomic purposes, but the effect on CH4 emissions is unknown. To address this gap, two lab studies were conducted, evaluating the CH4 produced from liquid dairy manure with Penergetic-g® (12 mg/L, 42 mg/L, and 420 mg/L) or AgrimestMix® (30.3 mL/L). In the first study, cellulose produced 378 mL CH4/g volatile solids (VS) at 38 °C and there was no significant difference with Penergetic-g® at 12 mg/L or 42 mg/L. At the same temperature, dairy manure produced 254 mL CH4/g VS and was not significantly different from 42 mg/L Penergetic-g®. In the second lab study, the dairy manure control produced 187 mL CH4/g VS at 37 °C and 164 mL CH4/g VS at 20 °C, and there was no significant difference with AgrimestMix (30.3 mL/L) or Penergetic-g® (420 mg/L) at either temperature. Comparisons of manure composition before and after incubation indicated that the additives had no effect on pH or VS, and small and inconsistent effects on other constituents. Overall, neither additive affected CH4 production in the lab. The results suggest that farms using these additives are likely to have normal CH4 emissions from stored manure.

4.
J Air Waste Manag Assoc ; 69(9): 1096-1106, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184562

RESUMO

Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice. Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.


Assuntos
Esterco/análise , Metano/análise , Temperatura , Fenômenos Fisiológicos Bacterianos , Fazendas , Fertilizantes/análise
5.
Waste Manag ; 58: 70-80, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717701

RESUMO

The extraction of natural resources often involves housing workers in remote work camps far from population centres. These camps are prevalent in northern Alberta where they house approximately 40,000 workers involved in oil sands processing. The central, full-service cafeterias at these camps produce a significant quantity of food and cardboard waste. Due to their remote nature, these camps face high waste disposal costs associated with trucking waste long distances to the landfill. In this study, we investigated the techno-economic feasibility of on-site treatment of food and cardboard waste in a tandem dry batch, garage-style anaerobic digestion-compost process in which the waste material is converted into renewable energy used to heat the camp water supply and a nutrient-rich soil amendment for local land reclamation projects. Dry batch digestion and windrow composting pilot trials were performed on a simulated work camp waste in order to assess technical performance. The quality of the final compost was found to meet regulatory standards. A complete mass balance was then developed for a facility treating 3000 tonnes food waste and 435 tonnes waste cardboard annually. An economic assessment of such a facility was performed and, depending on the level of capital support and recognition of carbon credits for landfill methane mitigation, would require waste disposal costs to be between $115 and $195 CAD per tonne to meet financial criteria for project selection in Alberta's oil and gas industry.


Assuntos
Solo , Gerenciamento de Resíduos/métodos , Alberta , Anaerobiose , Biocombustíveis , Alimentos , Metano/metabolismo , Energia Renovável , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/instrumentação , Meio Selvagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA