Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 21(20): 8933-8940, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34415172

RESUMO

Diabetes is a disease condition characterized by a prolonged, high blood glucose level, which may lead to devastating outcomes unless properly managed. Here, we introduce a simple camera-based optical monitoring system (OMS) utilizing the nanoparticle embedded contact lens that produces color changes matching the tear glucose level without any complicated electronic components. Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. As a result, using in vivo mouse models and human tear samples we successfully demonstrated robust correlations across the glucose concentrations measured by three different independent techniques, validating the quantitative efficacy of the proposed OMS. For its methodological simplicity and accessibility, our findings strongly support that the innovation offered by the OMS and processing algorithm would greatly facilitate the glucose monitoring procedure and improve the overall welfare of diabetes patients.


Assuntos
Técnicas Biossensoriais , Lentes de Contato , Nanopartículas , Animais , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Camundongos
2.
Biomed Eng Online ; 16(1): 135, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169367

RESUMO

BACKGROUND: Dry eye syndrome is one of the most common ocular diseases, and meibomian gland dysfunction (MGD) is the leading cause of evaporative dry eye syndrome. When the tear film lipid layer becomes thin due to obstructive or hyposecretory meibomian gland dysfunction, the excessive evaporation of the aqueous layer can occur, and this causes evaporative dry eye syndrome. Thus, measuring the lipid layer thickness (LLT) is essential for accurate diagnosis and proper treatment of evaporative dry eye syndrome. METHODS: We used a white LED panel with a slit lamp microscope to obtain videos of the lipid layer interference patterns on the cornea. To quantitatively analyze the LLT from interference colors, we developed a novel algorithm that can automatically perform the following processes on an image frame: determining the radius of the iris, locating the center of the pupil, defining region of interest (ROI), tracking the ROI, compensating for the color of iris and illumination, and producing comprehensive analysis output. A group of dry eye syndrome patients with hyposecretory MGD, dry eye syndrome without MGD, hypersecretory MGD, and healthy volunteers were recruited. Their LLTs were analyzed and statistical information-mean and standard deviation, the relative frequency of LLT at each time point, and graphical LLT visualization-were produced. RESULTS: Using our algorithm, we processed the lipid layer interference pattern and automatically analyzed the LLT distribution of images from patients. The LLT of hyposecretory MGD was thinner (45.2 ± 11.6 nm) than that of dry eye syndrome without MGD (69.0 ± 9.4 nm) and healthy volunteers (68.3 ± 13.7 nm) while the LLT of hypersecretory MGD was thicker (93.5 ± 12.6 nm) than that of dry eye syndrome without MGD. Patients' LLTs were statistically analyzed over time, visualized with 3D surface plots, and displayed using 3D scatter plots of image pixel data for comprehensive assessment. CONCLUSIONS: We developed an image-based algorithm for quantitative measurement as well as statistical analysis of the LLT despite fluctuation and eye movement. This pilot study demonstrates that the quantitative LLT analysis of patients is consistent with the functions of meibomian glands clinically evaluated by an ophthalmologist. This approach is a significant step forward in developing a fully automated instrument for evaluating dry eye syndrome and for providing proper guidance of treatment.


Assuntos
Diagnóstico por Imagem , Metabolismo dos Lipídeos , Glândulas Tarsais/diagnóstico por imagem , Glândulas Tarsais/metabolismo , Lágrimas/diagnóstico por imagem , Córnea/diagnóstico por imagem , Córnea/metabolismo , Síndromes do Olho Seco/diagnóstico por imagem , Síndromes do Olho Seco/metabolismo , Humanos , Lágrimas/metabolismo
3.
Biomolecules ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927016

RESUMO

Platelets play essential roles in the formation of blood clots by clumping with coagulation factors at the site of vascular injury to stop bleeding; therefore, a reduction in the platelet number or disorder in their function causes bleeding risk. In our research, we developed a method to assess platelet aggregation using an optical approach within a microfluidic chip's channel by evaluating the size of laser speckles. These speckles, associated with slowed blood flow in the microfluidic channel, had a baseline size of 28.54 ± 0.72 µm in whole blood. Removing platelets from the sample led to a notable decrease in speckle size to 27.04 ± 1.23 µm. Moreover, the addition of an ADP-containing agonist, which activates platelets, resulted in an increased speckle size of 32.89 ± 1.69 µm. This finding may provide a simple optical method via microfluidics that could be utilized to assess platelet functionality in diagnosing bleeding disorders and potentially in monitoring therapies that target platelets.


Assuntos
Plaquetas , Agregação Plaquetária , Plaquetas/efeitos dos fármacos , Humanos , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária/métodos , Testes de Função Plaquetária/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Difosfato de Adenosina/farmacologia
4.
Biomolecules ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927117

RESUMO

The crucial role of platelets in hemostasis and their broad implications under various physiological conditions underscore the importance of accurate platelet-function testing. Platelets are key to clotting blood and healing wounds. Therefore, accurate diagnosis and management of platelet disorders are vital for patient care. This review outlines the significant advancements in platelet-function testing technologies, focusing on their working principles and the shift from traditional diagnostic methods to more innovative approaches. These improvements have deepened our understanding of platelet-related disorders and ushered in personalized treatment options. Despite challenges such as interpretation of complex data and the costs of new technologies, the potential for artificial-intelligence integration and the creation of wearable monitoring devices offers exciting future possibilities. This review underscores how these technological advances have enhanced the landscape of precision medicine and provided better diagnostic and treatment options for platelet-function disorders.


Assuntos
Transtornos Plaquetários , Plaquetas , Testes de Função Plaquetária , Humanos , Plaquetas/metabolismo , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/terapia , Transtornos Plaquetários/sangue , Testes de Função Plaquetária/métodos , Medicina de Precisão/métodos , Hemostasia
5.
Sci Rep ; 14(1): 7474, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553572

RESUMO

The development of random number generators (RNGs) using speckle patterns is pivotal for secure encryption key generation, drawing from the recent statistical properties identified in speckle-based imaging. Speckle-based RNG systems generate a sequence of random numbers through the unpredictable and reproducible nature of speckle patterns, ensuring a source of randomness that is independent of algorithms. However, to guarantee their effectiveness and reliability, these systems demand a meticulous and rigorous approach. In this study, we present a blood-inspired RNG system with a microfluidics device, designed to generate random numbers at a rate of 5.5 MHz and a high-speed of 1250 fps. This process is achieved by directing a laser beam through a volumetric scattering medium to procure speckle patterns. Additionally, designed microfluidic device requires only a minimal blood sample of 5 µl to capture these speckle patterns effectively. After implementing the two-pass tuple-output von Neumann debiasing algorithm to counteract statistical biases, we utilized the randomness statistical test suite from the National Institute of Standards and Technology for validation. The generated numbers successfully passed these tests, ensuring their randomness and unpredictability. Our blood-inspired RNG, utilizing whole blood, offers a pathway for affordable, high-output applications in fields like encryption, computer security, and data protection.

6.
Biomater Res ; 27(1): 135, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111009

RESUMO

BACKGROUND: Noninvasive monitoring of tear glucose levels can be convenient for patients to manage their diabetes mellitus. However, there are issues with monitoring tear glucose levels, such as the invasiveness of some methods, the miniaturization, inaccuracy, or the high cost of wearable devices. To overcome the issues, we newly designed a sucking disk-type (SD) strip biosensor that can quickly suck tear fluid and contains cerium oxide nanoparticle (CNP) that causes a unique color change according to the glucose level of the tear without complicated electronic components. METHODS: The SD strip biosensor composed of three distinct parts (tip, channel, and reaction chamber) was designed to contain the sensing paper, onto which tear fluid can be collected and delivered. The sensing paper treated with CNP/APTS (aminopropyltriethoxysilane) /GOx (glucose oxidase) was characterized. Then we carried out the reliability of the SD strip biosensor in the diabetic rabbit animals. We quantitatively analyzed the color values of the SD strip biosensor through the colorimetric analysis algorithm. RESULTS: We contacted the inferior palpebral conjunctiva (IPC) of a diabetic rabbit eye using an SD strip biosensor to collect tears without eye irritation and successfully verified the performance and quantitative efficacy of the sensor. An image processing algorithm that can optimize measurement accuracy is developed for accurate color change measurement of SD strip biosensors. The validation tests show a good correlation between glucose concentrations measured in the tear and blood. CONCLUSION: Our findings demonstrate that the CNP-embedded SD strip biosensor and the associated image processing can simply monitor tear glucose to manage diabetes mellitus.

7.
Theranostics ; 12(14): 6308-6338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168630

RESUMO

Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Algoritmos , Técnicas Biossensoriais/métodos , Glicemia , Automonitorização da Glicemia , Colorimetria/métodos , Diabetes Mellitus/diagnóstico , Glucose , Humanos
8.
ACS Cent Sci ; 8(5): 513-526, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647284

RESUMO

Counterfeit medicines are a healthcare security problem, posing not only a direct threat to patient safety and public health but also causing heavy economic losses. Current anticounterfeiting methods are limited due to the toxicity of the constituent materials and the focus of secondary packaging level protections. We introduce an edible, imperceptible, and scalable matrix code of information representation and data storage for pharmaceutical products. This matrix code is digestible as it is composed of silk fibroin genetically encoded with fluorescent proteins produced by ecofriendly, sustainable silkworm farming. Three distinct fluorescence emission colors are incorporated into a multidimensional parameter space with a variable encoding capacity in a format of matrix arrays. This code is smartphone-readable to extract a digitized security key augmented by a deep neural network for overcoming fabrication imperfections and a cryptographic hash function for enhanced security. The biocompatibility, photostability, thermal stability, long-term reliability, and low bit error ratio of the code support the immediate feasibility for dosage-level anticounterfeit measures and authentication features. The edible code affixed to each medicine can serve as serialization, track and trace, and authentication at the dosage level, empowering every patient to play a role in combating illicit pharmaceuticals.

9.
J Photochem Photobiol B ; 210: 111959, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32739664

RESUMO

Trigeminal ganglion (TG) neurons play an essential role in the sensory nerves of the face. Damaged TG neurons resulting from the accidental and non-intentional nerve lesions, commonly identified as neuropathic pain, which is known to cause intense pain and sensory abnormalities. For the treatment, surgical methods are conducted when the pharmacological treatment fails to provide satisfactory recovery. However, the process of surgery or drug intake can burden the patient or cause side effects. One of the logical choices of study becomes photobiomodulation (PBM) referred to as therapeutic approaches based on the interactions of visible or near-infrared (NIR) photons with biomolecules inside cells or tissues. In this study, we constructed a PBM illumination setup to stimulate the cultured primary TG neurons and compared the growth morphology between the non-irradiated control group and irradiation group with NIR laser of 808 nm wavelength. In addition, we applied various radiant exposures of 1, 2, and 10 J/cm2 with different pulse frequencies of 1, 10, and 100 Hz. We found that PBM could promote neurite growth of TG neurons, and it works at relatively low energy densities at 1 and 2 J/cm2. The irradiation group in the pulsed wave mode with the frequency of 10 Hz was found to be the most effective when compared to other frequencies. Thus, PBM on TG neurons facilitated neuronal growth in vitro in a dose and frequency-dependent fashion. PBM may provide a potential therapeutic approach to treat damaged peripheral nerves.


Assuntos
Raios Infravermelhos , Animais , Células Cultivadas , Camundongos , Neuritos/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Imagem Óptica , Gânglio Trigeminal/citologia
10.
Sci Rep ; 10(1): 8254, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427894

RESUMO

Glucose level is a primary indicator in the diagnosis and treatment of diabetes mellitus. According to the correlation between glucose concentration in blood and tears, measuring tear glucose can be an alternative to traditional strips test for blood glucose. Thus, measuring tear glucose levels could provide noninvasive monitoring of blood glucose. As a biocompatible biosensor, a nanoparticle embedded contact lens (NECL) is developed which is composed of glucose oxidase and cerium oxide (III). Using spectroscopy, we found the detectable changes in reflection spectrum of contact lenses with respect to the glucose concentration, and developed correlation curve of the reflection spectrum with known glucose level. Furthermore, we assessed tear glucose level and compared blood glucose level with the diabetic mouse model to evaluate this approach. Our algorithm for regular monitoring of glucose using contact lens biosensor may lead to noninvasive monitoring of tear glucose level. NECL may provide simple and noninvasive glucose monitoring based on the spectral changes in contact lens biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/métodos , Lentes de Contato , Diabetes Mellitus/metabolismo , Glucose/análise , Animais , Técnicas Biossensoriais/instrumentação , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus/diagnóstico , Feminino , Glucose/metabolismo , Glucose Oxidase/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/análise , Lágrimas/química
11.
PLoS One ; 14(10): e0224036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639179

RESUMO

Red blood cells (RBCs) undergo irreversible biochemical and morphological changes during storage, contributing to the hemorheological changes of stored RBCs, which causes deterioration of microvascular perfusion in vivo. In this study, a home-built optofluidic system for laser speckle imaging of flowing stored RBCs through a transparent microfluidic channel was employed. The speckle decorrelation time (SDT) provides a quantitative measure of RBC changes, including aggregation in the microchannel. The SDT and relative light transmission intensity of the stored RBCs were monitored for 42 days. In addition, correlations between the decorrelation time, RBC flow speed through the channel, and relative light transmission intensity were obtained. The SDT of stored RBCs increased as the storage duration increased. The SDTs of the RBCs stored for 21 days did not significantly change. However, for the RBCs stored for over 35 days, the SDT increased significantly from 1.26 ± 0.27 ms to 6.12 ± 1.98 ms. In addition, we measured the relative light transmission intensity and RBC flow speed. As the RBC storage time increased, the relative light transmission intensity increased, whereas the RBC flow speed decreased in the microchannel. The optofluidic laser speckle image decorrelation time provides a quantitative measure of assessing the RBC condition during storage. Laser speckle image decorrelation analysis may serve as a convenient assay to monitor the property changes of stored RBCs.


Assuntos
Preservação de Sangue/métodos , Viscosidade Sanguínea/fisiologia , Deformação Eritrocítica , Eritrócitos/citologia , Processamento de Imagem Assistida por Computador/métodos , Lasers , Controle de Qualidade , Preservação de Sangue/normas , Humanos , Técnicas Analíticas Microfluídicas , Fibras Ópticas , Perfusão
12.
Sci Rep ; 9(1): 16514, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712610

RESUMO

Platelet aggregation and adhesion are critically involved in both normal hemostasis and thrombosis during vascular injury. Before any surgery, it is important to identify the number of platelets and their functionality to reduce the risk of bleeding; therefore, platelet function testing is a requirement. We introduce a novel evaluation method of assessing platelet function with laser speckle contrast imaging. The speckle decorrelation time (SDT) of the blood flowing through a microfluidic channel chip provides a quantitative measure of platelet aggregation. We compared SDTs of whole blood and platelet-poor blood, i.e., whole blood stripped of its buffy coat region, and found a marked reduction in decorrelation time for platelet-poor blood. The measured SDT of platelet-poor blood was 1.04 ± 0.21 ms, while that of whole blood was 2.64 ± 0.83 ms. To further characterize the sensitivity of our speckle decorrelation time-based platelet function testing (SDT-PFT), we added various agonists involved in platelet aggregation, including adenosine diphosphate (ADP), epinephrine (EPI), and arachidonic acid (AA). In this study, the results show that whole blood with ADP resulted in the largest SDT, followed by whole blood with AA, whole blood with EPI, whole blood without agonist, and platelet-poor blood with or without agonist. These findings show that SDT-PFT has the potential for rapid screening of bleeding disorders and monitoring of anti-platelet therapies with only a small volume of blood.


Assuntos
Plaquetas/fisiologia , Plaquetas/efeitos da radiação , Lasers , Microfluídica , Testes de Função Plaquetária , Algoritmos , Bioengenharia , Humanos , Luz , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Teóricos , Testes de Função Plaquetária/instrumentação , Testes de Função Plaquetária/métodos
13.
Biomed Eng Lett ; 7(4): 317-323, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30603182

RESUMO

Red blood cell (RBC) dysfunction is often associated with a pathological intervention, and it has been proposed as a critical risk factor for certain lethal diseases. Examining the cell viability of RBCs under various physiological conditions is essential and of importance for precise diagnosis and drug discovery in the field of medicine and pharmacy. In this paper, we report a new analytical method that employs dielectrophoretic (DEP) force measurements in absolute units to assess the viability, and potentially the functionality of RBCs. We precisely quantify the frequency-dependent DEP forces of the RBCs by using a micro-electrode embedded chip combined with optical tweezers. DEP characteristics are known to be well-correlated with the viability of biological cells, and DEP forces are measured in both fresh and long-term stored RBCs to investigate the effect that the storage period has on the cell viability. Moreover, we investigate the DEP behavior of RBCs when exposed to oxidative stress and verify whether EDTA protects the RBCs from an oxidant. From the experiments, it is found that the fresh RBCs without oxidative stress display very high DEP forces over the entire frequency range, exhibiting two cutoff frequencies. However, both the RBCs stored for the long-term period and exposed to oxidative stress reveals that there exist no significant DEP forces over the frequency range. The results indicate that the DEP forces can serve as a useful parameter to verify whether the RBCs in certain blood are fresh and not exposed to oxidative stress. Therefore, it is believed that our system can be applied to a diagnostic system to monitor the cell viability of the RBCs or other types of cells.

14.
Biomed Opt Express ; 8(11): 4855-4864, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188086

RESUMO

The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain in vivo via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA