Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1351: 89-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35175613

RESUMO

Owing to astonishing properties such as the large surface area to volume ratio, mechanical stability, antimicrobial property, and collagen crosslinking, graphene family nanomaterials (GFNs) have been widely used in various biomedical applications including tissue regeneration. Many review literatures are available to compile the role of GFNs in cardiac, bone, and neuronal tissue regeneration. However, the contribution of GFNs in skin wound healing and tissue regeneration was not yet discussed. In the present review, we have highlighted the properties of GFNs and their application in skin wound healing. In addition, we have included challenges and future directions of GFNs in skin tissue regeneration in the portion of conclusion and perspectives.


Assuntos
Grafite , Nanoestruturas , Pele , Cicatrização
2.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540638

RESUMO

Humic substances (HSs) are chromogenic organic assemblies that are widespread in the environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities have led to the rapid market growth of agronomical HSs. However, there are still several technical issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)-function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should be detailed to identify practical crop treatment methodologies. These trials must then be accompanied by means to upgrade crop marketability to help the growers. Second, structural differences of HSs depending on extraction sources should be compared to develop quality control and assurance measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts for large farmland applications should be structurally and functionally distinguishable from other natural HSs. The diversity of organic structures and components in coal-based HSs must thus be examined thoroughly to provide practical information to growers. Overall, there is a consensus amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but appropriate research directions should be explored for growers' needs and farmland applications.


Assuntos
Agricultura/economia , Substâncias Húmicas/análise , Carvão Mineral/análise
3.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068646

RESUMO

Nowadays, the use of biostimulants to reduce agrochemical input is a major trend in agriculture. In this work, we report on calcium phosphate particles (CaP) recovered from the circular economy, combined with natural humic substances (HSs), to produce a plant biostimulant. CaPs were obtained by the thermal treatment of Salmo salar bones and were subsequently functionalized with HSs by soaking in a HS water solution. The obtained materials were characterized, showing that the functionalization with HS did not sort any effect on the bulk physicochemical properties of CaP, with the exception of the surface charge that was found to get more negative. Finally, the effect of the materials on nutrient uptake and translocation in the early stages of development (up to 20 days) of two model species of interest for horticulture, Valerianella locusta and Diplotaxis tenuifolia, was assessed. Both species exhibited a similar tendency to accumulate Ca and P in hypogeal tissues, but showed different reactions to the treatments in terms of translocation to the leaves. CaP and CaP-HS treatments lead to an increase of P accumulation in the leaves of D. tenuifolia, while the treatment with HS was found to increase only the concentration of Ca in V. locusta leaves. A low biostimulating effect on both plants' growth was observed, and was mainly scribed to the low concentration of HS in the tested materials. In the end, the obtained material showed promising results in virtue of its potential to elicit phosphorous uptake and foliar translocation by plants.


Assuntos
Agricultura/economia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Substâncias Húmicas/análise , Plantas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Peixes , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plântula/anatomia & histologia , Plântula/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Valerianella/química , Difração de Raios X
4.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546346

RESUMO

Humic acid (HA) is a principal component of humic substances, which make up the complex organic matter that broadly exists in soil environments. HA promotes plant development as well as stress tolerance, however the precise molecular mechanism for these is little known. Here we conducted transcriptome analysis to elucidate the molecular mechanisms by which HA enhances salt stress tolerance. Gene Ontology Enrichment Analysis pointed to the involvement of diverse abiotic stress-related genes encoding HEAT-SHOCK PROTEINs and redox proteins, which were up-regulated by HA regardless of salt stress. Genes related to biotic stress and secondary metabolic process were mainly down-regulated by HA. In addition, HA up-regulated genes encoding transcription factors (TFs) involved in plant development as well as abiotic stress tolerance, and down-regulated TF genes involved in secondary metabolic processes. Our transcriptome information provided here provides molecular evidences and improves our understanding of how HA confers tolerance to salinity stress in plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Substâncias Húmicas , Estresse Salino/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma/efeitos dos fármacos
5.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569966

RESUMO

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Assuntos
Fertilizantes , Substâncias Húmicas , Solo , Zea mays , Substâncias Húmicas/análise , Solo/química , Zea mays/crescimento & desenvolvimento , República da Coreia , Agricultura/métodos
6.
Sci Total Environ ; 914: 169871, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185178

RESUMO

Redox chemistry involving the quinone/phenol cycling of natural organic matter (NOM) is known to modulate microbial respiration. Complexation with metals or minerals can also affect NOM solubilization and stability. Inspired by these natural phenomena, a new soil amendment approach was suggested to effectively decrease methane emissions in flooded rice paddies. Structurally stable forms of NOM such as lignin and humic acids (HAs) were shown to decrease methane gas emissions in a vial experiment using different soil types and rice straw as a methanogenic substrate, and this inhibitory behavior was likely enhanced by ferric ion-NOM complexation. A mechanistic study using HAs revealed that complexation facilitated the slow release of the humic components. Interestingly, borohydride-based reduction, which transformed quinone moieties into phenols, caused the HAs to lose their inhibitory capacity, suggesting that the electron-accepting ability of HAs is vital for their inhibitory effect. In rice field tests, the humic-metal complexes were shown to successfully mitigate methane generation, while carbon dioxide emissions were relatively unchanged. Microbial community analysis of the rice fields by season revealed a decrease in specific cellulose-metabolizing and methanogenic genera associated with methane emissions. In contrast, the relative abundance of Thaumarchaeota and Actinomycetota, which are associated with NOM and recalcitrant organics, was higher in the presence of Fe-stabilized HAs. These microbial dynamics suggest that the slow release of humic components is effective in modulating the anoxic soil microbiome, possibly due to their electron-accepting ability. Given the simplicity, cost-effectiveness, and soil-friendly nature of complexation processes, Fe-stabilized NOM represents a promising approach for the mitigation of methane emissions from flooded rice paddies.


Assuntos
Microbiota , Oryza , Metano , Solo/química , Archaea , Quinonas , Agricultura
7.
Food Res Int ; 162(Pt A): 112013, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461239

RESUMO

Here we showed that the water-soluble components of fresh green coffee beans inhibit the growth of lettuce in hydroponic systems, whereas those of roasted coffee waste facilitate it. The growth enhancement was hardly related to hydroponic parameters (i.e., pH and electric conductivity) or the nitrogen contents of the extracts. Rather, the presence of chromogenic polymeric melanoidins in the coffee waste was found to be crucial for the crop growth acceleration. The quantitative comparison of low-molecular-weight organics including phytotoxic phenolics between the extracts suggested that Maillard reactions occurring during coffee roasting transform the phenolics into polymeric melanoidin products. The identification of humic-like molecular compositions in the roasted coffee waste and the restoration of crop-stimulating activity by the addition of a phenol oxidase to the fresh coffee bean extract also supported that the low-molecular-weight phenols are oxidatively coupled during the roasting, which was consistent with the bottom-up synthesis of crop-stimulatory humic substances.


Assuntos
Alcaloides , Toxinas Biológicas , Reação de Maillard , Fenóis , Polímeros , Extratos Vegetais
8.
Microbiol Spectr ; 10(6): e0263722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314978

RESUMO

Plant lignin is regarded as an important source for soil humic substances (HSs). Nonetheless, it remains unclear whether microbial metabolism on lignin is related to the genesis of unique HS biological activities (e.g., direct plant stimulation). Here, selected white-rot fungi (i.e., Ganoderma lucidum and Irpex lacteus) and plant litter- or mountain soil-derived microbial consortia were exploited to structurally modify lignin, followed by assessing the plant-stimulatory activity of the lignin-derived products. Parts solubilized by microbial metabolism on lignin were proven to exhibit organic moieties of phenol, carboxylic acid, and aliphatic groups and the enhancement of chromogenic features (i.e., absorbance at 450 nm), total phenolic contents, and radical-scavenging capacities with the cultivation times. In addition, high-resolution mass spectrometry revealed the shift of lignin-like molecules toward those showing either more molar oxygen-to-carbon or more hydrogen-to-carbon ratios. These results support the findings that the microbes involved, solubilize lignin by fragmentation, oxygenation, and/or benzene ring opening. This notion was also substantiated by the detection of related exoenzymes (i.e., peroxidases, copper radical oxidases, and hydrolases) in the selected fungal cultures, while the consortia treated with antibacterial agents showed that the fungal community is a sufficient condition to induce the lignin biotransformation. Major families of fungi (e.g., Nectriaceae, Hypocreaceae, and Saccharomycodaceae) and bacteria (e.g., Burkholderiaceae) were identified in the lignin-enriched cultures. All the microbially solubilized lignin products were likely to stimulate plant root elongation in the order selected white-rot fungi > microbial consortia > antibacterial agent-treated microbial consortia. Overall, this study supports the idea that microbial transformation of lignin can contribute to the formation of biologically active organic matter. IMPORTANCE Structurally stable humic substances (HSs) in soils are tightly associated with soil fertility, and it is thus important to understand how soil HSs are naturally formed. It is believed that microbial metabolism on plant matter contributes to natural humification, but detailed microbial species and their metabolisms inducing humic functionality (e.g., direct plant stimulation) need to be further investigated. Our findings clearly support that microbial metabolites of lignin could contribute to the formation of biologically active humus. This research direction appears to be meaningful not only for figuring out the natural processes, but also for confirming natural microbial resources useful for artificial humification that can be linked to the development of high-quality soil amendments.


Assuntos
Substâncias Húmicas , Solo , Substâncias Húmicas/análise , Lignina/metabolismo , Consórcios Microbianos , Fenóis/análise , Fenóis/metabolismo , Plantas/metabolismo , Fungos/metabolismo
9.
J Agric Food Chem ; 69(48): 14478-14487, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813307

RESUMO

We investigated the ability of microbial volatile organic compounds (MVOCs) emitted by Bacillus megaterium (a well-known MVOC producer) to modify the dissolution kinetics and surface of hydroxyapatite, a natural soil mineral. Facilitated phosphate release was induced by the airborne MVOCs in a time-dependent manner. Use of each standard chemical of the MVOCs then revealed that acetic and oxalic acids are crucial for the phenomenon. In addition, the ability of such MVOCs to engineer the apatite surfaces was evidenced by FT-IR spectra showing the COO- band variation with incubation time and the prolonged acceleration of phosphate release during the negligible acidification of the hydroxyapatite-containing solutions. The formation of calcium oxalate was revealed through SEM-EDS and XRD analyses, suggesting that MVOC oxalic acid interacts with calcium ions, leading to the precipitation of calcium oxalate, thus preventing the recrystallization of calcium phosphates. Gel- and soil-based plant cultivation tests employing Arabidopsis thaliana and solid calcium phosphates (i.e., nano- and microsized hydroxyapatites and calcium phosphate dibasic) demonstrated that these MVOC mechanisms facilitate plant growth by ensuring the prolonged supply of plant-available phosphate. The relationship between the growth enhancement and the particle size of the calcium phosphates also substantiated the MVOC sorption onto soil minerals related to plant growth. Given that most previous studies have assumed that MVOCs are a molecular lexicon directly detected by the dedicated sensing machinery of plants, our approach provides a new mechanistic view of the presence of abiotic mediators in the interaction between plants and microbes via MVOCs.


Assuntos
Compostos Orgânicos Voláteis , Minerais , Fósforo , Solo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Agric Food Chem ; 69(2): 805-814, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33249847

RESUMO

Here, coal-related humic substances (HSs) were examined to confirm whether sterilization treatments induce their inferior ability to stimulate lettuce in hydroponic cultivations. Interestingly, a drastic reduction in both lettuce biomass and microbial colony-forming units of the crop culture solutions was observed when the autoclaved HSs were treated. Some microbial genera (i.e., Bacillus and Aspergillus) identifiable in the bare HS-treated hydroponic systems were able to be isolated by direct inoculation of bare HS powders on conventional microbial nutrients, supporting that flourishing microbes in the hydroponic cultivations derive from bare HSs-treated. Moreover, coincubation of some isolated bacterial and fungal strains (i.e., Bacillus and Aspergillus genera) from HSs with lettuce resulted in a significant increase in plant biomass and enhanced resistance to NaCl-related abiotic stresses. Microbial volatile organic compounds renowned for plant stimulation were detected by using solid-phase microextraction coupled with gas chromatography-mass spectrometry. It was finally confirmed that the isolates are capable of utilizing carbon substrates such as pectin and tween 20 or 40, which are relevant to those of microbes isolated from peat and leonardite (i.e., HS extraction sources). Overall, our results suggest that microbiological factors could be considered when commercial coal-related HSs are applied in hydroponic crop cultivations.


Assuntos
Bactérias/isolamento & purificação , Carvão Mineral/microbiologia , Fungos/isolamento & purificação , Substâncias Húmicas/microbiologia , Lactuca/crescimento & desenvolvimento , Microbiota , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Substâncias Húmicas/análise , Hidroponia , Lactuca/microbiologia , Solo/química
11.
Appl Microbiol Biotechnol ; 87(4): 1569-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20473664

RESUMO

The aerobic metabolism of monofluorophenols (mono-FPs) by the actinomycete, Pseudonocardia benzenivorans, was studied. This strain was able to grow on 4-fluorophenol (4-FP) and readily transform 2- and 3-fluorophenol to the corresponding metabolites. The detailed mechanism of mono-FPs degradation by P. benzenivorans was elucidated from enzymatic assays and the identification of reaction intermediates by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry. Two types of fluorocatechols (i.e., 3- and 4-fluorocatechol) were identified as the key transformation products. During 4-FP degradation, only 4-fluorocatechol was detected, and a stoichiometric level of fluoride was released. Both fluorocatechols were observed together in cultures containing 3-fluorophenol (3-FP), while only 3-fluorocatechol was found to accumulate in 2-fluorophenol (2-FP)-containing cultures. Whole-cell extracts of P. benzenivorans expressed catechol 1,2-dioxygenase activity, indicating that the transformation of the three tested mono-FPs proceeded via ortho-cleavage pathway. The results presented in this paper provide comprehensive information regarding the metabolism of mono-FPs by a single bacterium.


Assuntos
Actinomycetales/metabolismo , Fenóis/metabolismo , Biodegradação Ambiental , Biotransformação
12.
Water Res ; 186: 116380, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919139

RESUMO

Filamentous fungi are believed to remove a wide range of environmental xenobiotics due to their characteristically non-specific catabolic metabolisms. Nonetheless, irregular hyphal spreading can lead to clogging problems in treatment facilities and the dependence of pollutant bioavailability on hyphal surface features severely limits their applicability in water treatment. Here, we propose a scalable and facile methodology to structurally modify fungal hyphae, allowing for both the maximization of pollutant sorption and fungal pellet morphology self-regulation. Halloysite-doped mycelium architectures were efficiently constructed by dipping Aspergillus fumigatus pellets in halloysite nanotube-dispersed water. Ultrastructure analyses using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy revealed that the nanotubes were mainly attached to the outer surface of the pellets. Fungal viability and exoenzyme production were hardly affected by the halloysites. Notably, nanotube doping appeared to be extremely robust given that detachments rarely occurred even in high concentrations of organic solvents and salt. It was also demonstrated that the doped halloysites weakened hyphal growth-driven gelation, thus maintaining sphere-like pellet structures. The water treatment potential of the hybrid fungal mycelia was assessed through both cationic toxic organic/inorganic-contaminated water and real dye industry wastewater clean-ups. Aided by the mesoporous halloysite sites on their surface, the removal abilities of the hybrid structures were significantly enhanced. Moreover, inherent low sorption ability of HNT for heavy metals was found to be overcome by the aid of fungal mycelia. Finally, universal feature of the dipping-based doping way was confirmed by using different filamentous fungi. Given that traditional approaches to effectively implement fungus-based water treatment are based mostly on polymer-based immobilization techniques, our proposed approach provides a novel and effective alternative via simple doping of living fungi with environmentally-benign clays such as halloysite nanotubes.


Assuntos
Nanotubos , Purificação da Água , Cerâmica , Argila , Hifas
13.
Sci Rep ; 10(1): 15042, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929162

RESUMO

Humic acid (HA) is composed of a complex supramolecular association and is produced by humification of organic matters in soil environments. HA not only improves soil fertility, but also stimulates plant growth. Although numerous bioactivities of HA have been reported, the molecular evidences have not yet been elucidated. Here, we performed transcriptomic analysis to identify the HA-prompted molecular mechanisms in Arabidopsis. Gene ontology enrichment analysis revealed that HA up-regulates diverse genes involved in the response to stress, especially to heat. Heat stress causes dramatic induction in unique gene families such as Heat-Shock Protein (HSP) coding genes including HSP101, HSP81.1, HSP26.5, HSP23.6, and HSP17.6A. HSPs mainly function as molecular chaperones to protect against thermal denaturation of substrates and facilitate refolding of denatured substrates. Interestingly, wild-type plants grown in HA were heat-tolerant compared to those grown in the absence of HA, whereas Arabidopsis HSP101 null mutant (hot1) was insensitive to HA. We also validated that HA accelerates the transcriptional expression of HSPs. Overall, these results suggest that HSP101 is a molecular target of HA promoting heat-stress tolerance in Arabidopsis. Our transcriptome information contributes to understanding the acquired genetic and agronomic traits by HA conferring tolerance to environmental stresses in plants.


Assuntos
Proteínas de Choque Térmico/genética , Substâncias Húmicas , Termotolerância , Ativação Transcricional , Arabidopsis , Proteínas de Choque Térmico/metabolismo , Transcriptoma
14.
Sci Total Environ ; 725: 138409, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464747

RESUMO

Here, five aromatic monomers, one bearing a long alkyl chain [3-pentadecylphenol (3-PP)], the second bearing a polycyclic aromatic hydrocarbon [dihydroxynaphthalene (DHN)], the third bearing an organic amine [l-3,4-dihydroxyphenylalanine (l-DOPA)], the fourth bearing a carboxylic acid [vanillic acid (VA)], and the fifth bearing a phenol [catechol (CA)] were oxidatively coupled to produce four humic-like substances (3-PP, DHN, l-DOPA, and CAVA products) to mimic the diverse organic architectures of natural humus. Analysis using several methods, including SEM, EPR, elemental analysis, FT-IR-ATR, 13C NMR and anti-oxidant capability, revealed that each of the monomeric structures was well incorporated into the corresponding humic-like substances. Seed germination acceleration and NaCl-involved abiotic stress resistance of Arabidopsis thaliana were then tested to determine whether the different structures resulted in different levels of plant stimulation. The l-DOPA, CAVA and DHN-based materials showed enhanced stimulatory activities compared with no treatment, whereas the effects of the 3-PP-based materials were meager. Interestingly, high-resolution (15 T) ESI FT-ICR mass spectrometry-based van Krevelen diagrams clearly showed that the presence of molecules with H/C and O/C ratios ranging from 0.5 to 1.0 and 0.2 to 0.4, respectively, could be connected with such biological actions. Here, the l-DOPA sample showed the highest content of such molecules, followed by the CAVA, DHN and 3-PP samples. Next, the ability of l-DOPA and CAVA products to induce resistance in A. thaliana to a pathogen-related biotic stress was tested to confirm whether the proposed molecular features are associated with multi-stimulatory actions on plants. The expression level of pathogenesis-related protein 1 and inspection of plant morphology clearly revealed that both the l-DOPA and CAVA products stimulate plants to respond to biotic stresses. Size-exclusion chromatography together with NMR and IR data of both the materials strongly suggests that lignin-like supramolecular assemblages play an important role in versatile biological activities of humus.


Assuntos
Substâncias Húmicas/análise , Solo , Plantas , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
15.
ACS Omega ; 5(12): 6598-6610, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258895

RESUMO

The use of salt- or macro-sized NPK fertilizers is typically associated with low nutrient use efficiency and water eutrophication. Nanotechnology can overcome such drawbacks, but its practical application on a large scale is limited by (i) high costs and difficult scale-up of nanoparticle synthesis, (ii) questionable advantages over traditional methods, and (iii) health hazards related to nanomaterial introduction in the food stream and the environment. Here, we report on a novel biocompatible and multifunctional P nanofertilizer obtained by self-assembling natural or synthetic humic substances and hydroxyapatite nanoparticles using a simple and straightforward dipping process, exploiting the interaction between the polyphenolic groups of humic substances and the surface of nanohydroxyapatite. Pot tests using the as-prepared materials were performed on Zea mays as a model crop, and the results were compared to those obtained using commercial fused superphosphate and bare nanohydroxyapatites. A significant improvement, in terms of early plant growth, corn productivity, rhizosphere bacteria, and the resistance to NaCl-induced abiotic stresses, was achieved using hydroxyapatite nanoparticles assembled with humic substances. These effects were ascribed to the synergistic co-release of phosphate ions and humic substances, which are two types of plant-beneficial agents for crop nutrition and stimulation, respectively. The release patterns were proven to be tunable with the amount of humic substances adsorbed on the nanoparticles, inducing competition between humic-substance-driven phosphorous dissolution and block of water contact. Such positive effects on plant growth in association with its intrinsic biocompatibility, simple synthesis, and multifunctionality qualify this novel nanofertilizer as a promising material for large-scale use in the agronomic field.

16.
Appl Microbiol Biotechnol ; 82(2): 341-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19130052

RESUMO

In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l(-1)) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p<0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV-Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG.


Assuntos
Corantes/química , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Fenóis/química , Reishi/enzimologia , Corantes de Rosanilina/química , Biotransformação , Corantes/metabolismo , Fibras na Dieta/análise , Proteínas Fúngicas/genética , Lacase/genética , Phanerochaete/crescimento & desenvolvimento , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Corantes de Rosanilina/metabolismo
17.
Biodegradation ; 20(4): 511-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19085063

RESUMO

A new bacterial strain PH-06 was isolated using enrichment culture technique from river sediment contaminated with 1,4-dioxane, and identified as belonging to the genus Mycobacterium based on 16S rRNA sequencing (Accession No. EU239889). The isolated strain effectively utilized 1,4-dioxane as a sole carbon and energy source and was able to degrade 900 mg/l 1,4-dioxane in minimal salts medium within 15 days. The key degradation products identified were 1,4-dioxane-2-ol and ethylene glycol, produced by monooxygenation. Degradation of 1,4-dioxane and concomitant formation of metabolites were demonstrated by GC/MS analysis using deuterium labeled 1,4-dioxane (1,4-dioxane-d8). In addition to 1,4-dioxane, this bacterium could also transform structural analogues such as 1,3-dioxane, cyclohexane and tetrahydrofuran when pre-grown with 1,4-dioxane as the sole growth substrate. Our results suggest that PH-06 can maintain sustained growth on 1,4-dioxane without any other carbon sources.


Assuntos
Dioxanos/metabolismo , Mycobacterium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Mycobacterium/genética , RNA Ribossômico 16S/genética
18.
Biotechnol Adv ; 37(8): 107416, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31323257

RESUMO

Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.


Assuntos
Lignina/química , Animais , Celulose , Substâncias Húmicas , Fenóis , Solo
19.
J Colloid Interface Sci ; 553: 298-307, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31212229

RESUMO

This study investigated the characteristics of biochars derived using various pine tree residues and pyrolysis temperatures and evaluated their Cd adsorption behaviors. The characteristics of pine tree residue biochars (PRBs) were dominantly affected by the pyrolysis temperature, and the optimum pyrolysis temperature for Cd adsorption was 600 °C. The adsorption of Cd by PRBs was divided into two stages: rapid adsorption on the initial boundary layer and slow adsorption by intraparticle diffusion. The Cd adsorption characteristics of all the PRBs were well described by pseudo-second-order and Langmuir isotherm models, and the maximum adsorption capacity was the highest in pine bark biochar (85.8 mg/g). The amounts of the cations released from the mixed pine tree residue biochars (M-PRBs) during Cd adsorption were increased, while the amount of phosphate released was decreased, indicating that exchangeable cations and phosphate on the biochar affected the Cd adsorption. In particular, the amount of Cd removed by the exchangeable cations corresponds to 23.6% of the total adsorption amount. Spectroscopic analyses using FTIR showed that the Cd adsorption on M-PRB was associated with functional groups such as CC, COH and COOH. Overall, the use of biochars derived from pine tree residue as an adsorbent is considered to be effective for both the treatment of wastewater containing heavy metals and the recycling of forest residues.


Assuntos
Cádmio/química , Pinus/química , Pirólise , Temperatura , Adsorção , Tamanho da Partícula , Propriedades de Superfície
20.
Appl Microbiol Biotechnol ; 81(4): 783-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18987855

RESUMO

Laccases have low redox potentials limiting their environmental and industrial applications. The use of laccase mediators has proven to be an effective approach for overcoming the low redox potentials. However, knowledge about the role played by the mediator cocktails in such a laccase-mediator system (LMS) is scarce. Here, we assembled different dual-agent mediator cocktails containing 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), vanillin, and/or acetovanillone, and compared their mediating capabilities with those of each individual mediator alone in oxidation of pentachlorophenol (PCP) by Ganoderma lucidum laccase. Cocktails containing ABTS and either vanillin or acetovanillone strongly promoted PCP removal compared to the use of each mediator alone. The removal enhancement was correlated with mediator molar ratios of the cocktails and incubation times. Analysis of the kinetic constants for each mediator compound showed that G. lucidum laccase was very prone to react with ABTS rather than vanillin and acetovanillone in the cocktails. Moreover, the presence of the ABTS radical (ABTS+*) and vanillin or acetovanillone significantly enhanced PCP removal concomitant with electron transfer from vanillin or acetovanillone to ABTS+*. These results strongly suggest that vanillin and acetovanillone mediate the reaction between ABTS and PCP via multiple sequential electron transfers among laccase and its mediators.


Assuntos
Acetofenonas/química , Benzaldeídos/química , Benzotiazóis/química , Proteínas Fúngicas/química , Lacase/química , Pentaclorofenol/química , Reishi/enzimologia , Ácidos Sulfônicos/química , Acetofenonas/metabolismo , Benzaldeídos/metabolismo , Benzotiazóis/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Lacase/metabolismo , Oxirredução , Pentaclorofenol/metabolismo , Ácidos Sulfônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA