Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(27): e2302701, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485641

RESUMO

A huge concern on global climate/energy crises has triggered intense development of radiative coolers (RCs), which are promising green-cooling technologies. The continuous efforts on RCs have fast-tracked notable energy-savings by minimizing solar absorption and maximizing thermal emission. Recently, in addition to spectral optimization, ceramic-based thermally insulative RCs are reported to improve thermoregulation by suppressing heat gain from the surroundings. However, a high temperature co-firing process of ceramic-based thick film inevitably results in a large mismatch of structural parameters between designed and fabricated components, thereby breaking spectral optimization. Here, this article proposes a scalable, non-shrinkable, patternable, and thermally insulative ceramic RC (SNPT-RC) using a roll-to-roll process, which can fill a vital niche in the field of radiative cooling. A stand-alone SNPT-RC exhibits excellent thermal insulation (≈0.251 W m-1  K-1 ) with flame-resistivity and high solar reflectance/long-wave emissivity (≈96% and 92%, respectively). Alternate stacks of intermediate porous alumina/borosilicate (Al2 O3 -BS) layers not only result in outstanding thermal and spectral characteristics, causing excellent sub-ambient cooling (i.e., 7.05 °C cooling), but also non-shrinkable feature. Moreover, a perforated SNPT-RC demonstrates its versatility as a breathable radiative cooling shade and as a semi-transparent window, making it a highly promising technology for practical deployment in energy-saving architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA