Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39037931

RESUMO

OBJECTIVES: Unraveling the mechanisms underlying treatment response for targeted therapeutics in systemic lupus erythematosus (SLE) patients is challenging due to the limited understanding of diverse responses of circulating immune cells, particularly B cells. We investigated B lymphocyte dynamics during anti-BAFF treatment, utilizing longitudinal single-cell transcriptome data. METHODS: We conducted single-cell RNA sequencing on PBMCs in four Korean SLE patients before and after belimumab treatment at the following time points: 2 weeks, 1, 3, 6, and 12 months. RESULTS: Analyzing over 73 000 PBMCs, we identified 8 distinct subsets of B cells and plasmablasts and analyzed dynamic changes within these cell subsets: initial declines in naive and transitional B cells followed by an increase at three months, contrasted by an initial increase and subsequent decrease in memory B cells by the third month. Meanwhile, plasmablasts exhibited a consistent decline throughout treatment. B cell activation pathways, specifically in naive and memory B cells, were downregulated during the third and sixth months. These findings were validated at the protein level throughout the first four weeks of treatment using flow cytometry. Comparative analysis with bulk transcriptome data from 22 Japanese SLE patients showed increased NR4A1 expression six months post-belimumab treatment, indicating its role in restricting self-reactive B cells, thereby contributing to the biological responses of anti-BAFF treatment. CONCLUSION: The observed B cell dynamics provided insights into the immunological mechanisms underlying the therapeutic effects of anti-BAFF in SLE patients. Furthermore, it underscores the need for research in predicting drug responses based on immune profiling.

2.
J Eur Acad Dermatol Venereol ; 38(8): 1599-1605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38420727

RESUMO

BACKGROUND: Studies on the interaction between tumour-infiltrating immune cells (TIICs) and tumour cells in melanoma arising from congenital melanocytic nevus (CMN) are lacking. OBJECTIVE: The aim of this study was to determine the intratumoral immune landscape of TIICs and tumour cells during invasion and metastasis. METHODS: Tissue specimens were obtained from patients with melanoma originating from CMN. Differential gene expression in melanoma cells and TIICs during invasion and metastasis was determined using spatial transcriptomics. RESULTS: As invasion depth increased, the expression of LGALS3, known to induce tumour-driven immunosuppression, increased in melanoma cells. In T cells, the expression of genes that inhibit T-cell activation increased with increasing invasion depth. In macrophages, the expression of genes related to the anti-inflammatory M2 phenotype was upregulated with increasing invasion depth. Compared to primary tumour cells, melanoma cells in metastatic lesions showed upregulated expression of genes associated with cancer immune evasion, including AXL and EPHA2, which impede T-cell recruitment, and BST2, associated with M2 polarization. Furthermore, T cells showed increased expression of genes related to immunosuppression, and macrophages exhibited increased expression of genes associated with the M2 phenotype. CONCLUSIONS: The interaction between melanomas arising from CMN and TIICs may be important for tumour progression and metastasis.


Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Nevo Pigmentado/genética , Nevo Pigmentado/imunologia , Nevo Pigmentado/patologia , Nevo Pigmentado/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Perfilação da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Invasividade Neoplásica , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Linfócitos T/imunologia , Transcriptoma , Receptor Tirosina Quinase Axl , Comunicação Celular , Pessoa de Meia-Idade , Galectinas/genética , Galectinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas Sanguíneas
3.
World J Microbiol Biotechnol ; 40(1): 29, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057638

RESUMO

Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.


Assuntos
Antioxidantes , Peptídeos , Animais , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Peptídeos/química , Suplementos Nutricionais , Peptídeo Hidrolases
4.
Biochem Biophys Res Commun ; 529(2): 444-449, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703449

RESUMO

Deinococcus radiodurans is well known for its extreme resistance to ionizing radiation (IR). Since reactive oxygen species generated by IR can damage various cellular components, D. radiodurans has developed effective antioxidant systems to cope with this oxidative stress. dr1765 from D. radiodurans is predicted to encode an alkyl hydroperoxidase-like protein (AhpD family), which is implicated in the reduction of hydrogen peroxide (H2O2) and organic hydroperoxides. In this study, we constructed a dr1765 mutant strain (Δdr1765) and examined the survival rate after H2O2 treatment. Δdr1765 showed a significant decrease in the H2O2 resistance compared to the wild-type strain. We also determined the crystal structure of DR1765 at 2.27 Å resolution. DR1765 adopted an all alpha helix protein fold representative of the AhpD-like superfamily. Structural comparisons of DR1765 with its structural homologues revealed that DR1765 possesses the Glu74-Cys86-Tyr88-Cys89-His93 signature motif, which is conserved in the proton relay system of AhpD. Complementation of Δdr1765 with dr1765 encoding C86A or C89A mutation failed to restore the survival rate to wild-type level. Taken together, these results suggest that DR1765 might function as an AhpD to protect cells from oxidative stress.


Assuntos
Proteínas de Bactérias/química , Deinococcus/química , Peroxirredoxinas/química , Domínio Catalítico , Peróxido de Hidrogênio/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
5.
Microb Pathog ; 124: 38-46, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30114464

RESUMO

Streptococcus pneumoniae is a major respiratory pathogen that can cause pneumonia, meningitis, and otitis media. Although capsular polysaccharide-based vaccines are commercially available, there is a need for broad-spectrum, serotype-independent, and cost-effective vaccines. Recently, an intranasal vaccine formulated with gamma-irradiated nonencapsulated S. pneumoniae whole cells has been developed and its immunogenicity is under investigation. Since innate immunity influences the subsequent adaptive immunity, in the present study, we investigated the immunostimulatory activity of gamma-irradiated S. pneumoniae (r-SP) in the human bronchial epithelial cell-line, BEAS-2B, by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP). r-SP potently induced interleukin (IL)-6 and IL-8 at both mRNA and protein levels in a dose- and time-dependent manner, whereas h-SP and f-SP poorly induced them. Of note, the mRNA levels of IL-6 and IL-8 were approximately two-fold higher when cells were stimulated with 3 × 107 CFU/ml of r-SP for 3 h, while the protein levels of IL-6 and IL-8 were approximately five-fold higher after stimulation with 3 × 107 CFU/ml of r-SP for 24 h. Furthermore, r-SP exhibited potent activation of Toll-like receptor 2 compared with h-SP or f-SP. The expression of IL-6 and IL-8 induced by r-SP was mediated through the activation of mitogen-activated protein kinases. Remarkably, when r-SP was further treated with heat or formalin, there was a decrease in the aforementioned activities. Taken together, we suggest that r-SP stimulates the human respiratory epithelial cells to produce the cytokines IL-6 and IL-8, which might influence the induction of adaptive immune responses.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Raios gama , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/efeitos da radiação , Vacinas Bacterianas/imunologia , Linhagem Celular , Formaldeído , Perfilação da Expressão Gênica , Temperatura Alta , Humanos , Streptococcus pneumoniae/efeitos dos fármacos , Vacinas de Produtos Inativados/imunologia
7.
Front Microbiol ; 15: 1410024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962131

RESUMO

The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/ß hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.

8.
Int J Biol Macromol ; 269(Pt 2): 131834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688341

RESUMO

The amylosucrase (ASase, EC 2.4.1.4) utilizes sucrose as the sole substrate to catalyze multifunctional reactions. It can naturally synthesize α-1,4-linked glucans such as amylose as well as sucrose isomers with more favorable properties than sucrose with a lower intestinal digestibility and non-cariogenic properties. The amino acid sequence of the asase gene from Deinococcus cellulosilyticus (DceAS) exhibits low homology with those of other ASases from other Deinococcus species. In this study, we cloned and expressed DceAS and demonstrated its high activity at pH 6 and pH 8 and maintained stability. It showed higher polymerization activity at pH 6 than at pH 8, but similar isomerization activity and produced more turanose and trehalulose at pH 6 than at pH 8 and produced more isomaltulose at pH 8. Furthermore, the molecular weight of DceAS was 226.6 kDa at pH 6 and 145.5 kDa at pH 8, indicating that it existed as a trimer and dimer, respectively under those conditions. Additionally, circular dichroism spectra showed that the DceAS secondary structure was different at pH 6 and pH 8. These differences in reaction products at different pHs can be harnessed to naturally produce sucrose alternatives that are more beneficial to human health.


Assuntos
Deinococcus , Glucosiltransferases , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Concentração de Íons de Hidrogênio , Isomaltose/metabolismo , Isomaltose/química , Isomaltose/análogos & derivados , Sequência de Aminoácidos , Estabilidade Enzimática , Clonagem Molecular , Peso Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sacarose/metabolismo , Especificidade por Substrato , Cinética , Estrutura Secundária de Proteína , Dissacarídeos
9.
Microorganisms ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763980

RESUMO

Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.

10.
Genomics Inform ; 21(2): e18, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37704208

RESUMO

Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

12.
Int J Cancer ; 129(9): 2124-33, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21170990

RESUMO

In a previous study, human ZNF312b was identified as a cell proliferation-associated oncogene via the K-ras/extracellular signal-regulated kinase cascade in gastric cancer. However, the mechanism concerning its transcriptional activation remains unknown. Here, we show that DNA methylation and histone acetylation of the ZNF312b promoter function as a switch for ZNF312b transcriptional activation in gastric cancer. The transcription level of ZNF312b was increased by treatment with a demethylating agent, 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor sodium butyrate, in several human cancer cell lines including gastric cancer. Consistent with these results, epigenetic analysis, such as pyrosequencing, bisulfate sequencing and methyl-specific polymerase chain reaction (MSP), showed that the expression level of ZNF312b is highly dependent on the degree of DNA methylation in gastric cancer cell lines. In addition, by ChIP assay using anti-acetyl/methyl H3K9 antibodies, histone acetylation was shown to mediate the expression of the ZNF312b gene. Interestingly, ChIP assay using the Sp1 antibody revealed that the binding of transcription factor Sp1 to the ZNF312b promoter for its transcriptional activation requires DNA demethylation and histone acetylation. Moreover, a knockdown of Sp1 resulted in a decrease in ERK-mediated proliferation via downregulation of the ZNF312b gene in gastric cancer cells. Taken together, these results suggest that the aberrant expression of ZNF312b promotes gastric tumorigenesis through epigenetic modification of its promoter region and provides a molecular mechanism for ZNF312b expression to contribute to the progression of gastric cancer.


Assuntos
Metilação de DNA , Histonas/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Humanos , Neoplasias Gástricas/metabolismo , Ativação Transcricional
13.
Front Microbiol ; 12: 659233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394020

RESUMO

Deinococcus radiodurans known for its extraordinary resistance to ionizing radiation contains bacterial phytochrome (BphP), a member of the family of red/far-red light-sensing proteins. In this study, we constructed a bphP mutant strain (ΔbphP) to investigate the role of D. radiodurans BphP (DrBphP) in the DNA damage response. When cells were incubated under light and dark conditions following exposure to DNA damaging agents, such as γ- and UV-radiation and mitomycin C (MMC), no significant difference in cell survival was observed between the wild-type D. radiodurans strain (WT) and ΔbphP. However, when continuously exposed to MMC under light conditions, the WT strain notably exhibited increased survival compared to cells grown in the dark. The increased survival was not observed in the ΔbphP strain. These results are indicative of the protective role of light-activated DrBphP in the presence of MMC. Site-directed mutagenesis revealed that the conserved amino acids Cys-24 and His-532 involved in chromophore binding and signal transduction, respectively, were essential for the protective function of DrBphP. Inactivation of the cognate response regulator (RR; DrBphR) of DrBphP increased MMC resistance in the dark. In trans complementation of the bphP bphR double mutant strain (ΔbphPR) with DrBphR decreased MMC resistance. Considering that DrBphP acts as a light-activated phosphatase that dephosphorylates DrBphR, it appears that phosphorylated DrBphR exerts a negative effect on cell survival in the presence of MMC. DrBphP overexpression resulted in an increase in MMC resistance of ΔbphPR, implying that other RRs might be involved in the DrBphP-mediated signaling pathway. A mutant lacking the dr_0781 gene (Δdr_0781) demonstrated the same MMC phenotype as ΔbphR. Survival was further increased in the bphR dr_0781 double mutant strain compared to each single mutant ΔbphR or Δdr_0781, suggesting that DR_0781 is also involved in the DrBphP-dependent MMC sensitivity. This study uncovered a previously unknown phenomenon of red/far-red light-dependent DNA damage survival mediated by BphP by identifying the conditions under which DrBphP exhibits a fitness advantage.

14.
Antioxidants (Basel) ; 10(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34829714

RESUMO

Thioredoxin (Trx), a ubiquitous protein showing disulfide reductase activity, plays critical roles in cellular redox control and oxidative stress response. Trx is a member of the Trx system, comprising Trx, Trx reductase (TrxR), and a cognate reductant (generally reduced nicotinamide adenine dinucleotide phosphate, NADPH). Bacterial Trx1 contains only the Trx-fold domain, in which the active site CXXC motif that is critical for the disulfide reduction activity is located. Bacterial Trx2 contains an N-terminal extension, which forms a zinc-finger domain, including two additional CXXC motifs. The multi-stress resistant bacterium Deinococcus radiodurans encodes both Trx1 (DrTrx1) and Trx2 (DrTrx2), which act as members of the enzymatic antioxidant systems. In this study, we constructed Δdrtrx1 and Δdrtrx2 mutants and examined their survival rates under H2O2 treated conditions. Both drtrx1 and drtrx2 genes were induced following H2O2 treatment, and the Δdrtrx1 and Δdrtrx2 mutants showed a decrease in resistance toward H2O2, compared to the wild-type. Native DrTrx1 and DrTrx2 clearly displayed insulin and DTNB reduction activity, whereas mutant DrTrx1 and DrTrx2, which harbors the substitution of conserved cysteine to serine in its active site CXXC motif, showed almost no reduction activity. Mutations in the zinc binding cysteines did not fully eliminate the reduction activities of DrTrx2. Furthermore, we solved the crystal structure of full-length DrTrx2 at 1.96 Å resolution. The N-terminal zinc-finger domain of Trx2 is thought to be involved in Trx-target interaction and, from our DrTrx2 structure, the orientation of the zinc-finger domain of DrTrx2 and its interdomain interaction, between the Trx-fold domain and the zinc-finger domain, is clearly distinguished from those of the other Trx2 structures.

15.
Antioxidants (Basel) ; 10(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356381

RESUMO

Deinococcus radiodurans is a robust bacterium with extraordinary resistance to ionizing radiation and reactive oxygen species (ROS). D. radiodurans produces an antioxidant thiol compound called bacillithiol (BSH), but BSH-related enzymes have not been investigated. The D. radiodurans mutant lacking bshA (dr_1555), the first gene of the BSH biosynthetic pathway, was devoid of BSH and sensitive to hydrogen peroxide (H2O2) compared to the wild-type D. radiodurans strain. Three bacilliredoxin (Brx) proteins, BrxA, B, and C, have been identified in BSH-producing bacteria, such as Bacillus. D. radiodurans possesses DR_1832, a putative homolog of BrxC. However, because DR_1832 contains a novel signature motif (TCHKT) and a C-terminal region similar to the colicin-like immunity domain, we named it AbxC (atypical BrxC). The deletion of abxC also sensitized cells to H2O2. AbxC exhibited peroxidase activity in vitro, which was linked to nicotinamide adenine dinucleotide phosphate (NADPH) oxidation via the BSH disulfide reductase DR_2623 (DrBdr). AbxC proteins were present mainly as dimers after exposure to H2O2 in vitro, and the oxidized dimers were resolved to monomers by the reaction coupled with BSH as an electron donor, in which DrBdr transported reducing equivalents from NADPH to AbxC through BSH recycling. We identified 25 D. radiodurans proteins that potentially interact with AbxC using AbxC-affinity chromatography. Most of them are associated with cellular metabolisms, such as glycolysis and amino acid biosynthesis, and stress response. Interestingly, AbxC could bind to the proposed peroxide-sensing transcription regulator, DrOxyR. These results suggest that AbxC may be involved in the H2O2 signaling mechanism mediated by DrOxyR.

16.
Vaccines (Basel) ; 9(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921842

RESUMO

Streptococcus pneumoniae (pneumococcus) can cause respiratory and systemic diseases. Recently, γ-irradiation-inactivated, non-encapsulated, intranasal S. pneumoniae (r-SP) vaccine has been introduced as a novel serotype-independent and cost-effective vaccine. However, the immunogenic mechanism of r-SP is poorly understood. Here, we comparatively investigated the protective immunity and immunogenicity of r-SP to the heat-(h-SP) or formalin-inactivated vaccine (f-SP) without adjuvants. Mice were intranasally immunized with each vaccine three times and then challenged with a lethal dose of S. pneumoniae TIGR4 strain and then subsequently evaluated for their immune responses. Immunization with r-SP elicited modestly higher protection against S. pneumoniae than h-SP or f-SP. Immunization with r-SP enhanced pneumococcal-specific IgA in the nasal wash and IgG in bronchoalveolar lavage fluid. Immunization with r-SP enhanced S. pneumoniae-specific IgG, IgG1, and IgG2b in the serum. r-SP more potently induced the maturation of dendritic cells in the cervical lymph nodes than h-SP or f-SP. Interestingly, populations of follicular helper T cells and IL-4-producing cells were potently increased in cervical lymph nodes of r-SP-immunized mice. Collectively, r-SP could be an effective intranasal, inactivated whole-cell vaccine in that it elicits S. pneumoniae-specific antibody production and follicular helper T cell activation leading to protective immune responses against S. pneumoniae infection.

17.
BMC Genomics ; 10 Suppl 3: S32, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19958497

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders, clinically characterized by impaired motor function. Since the etiology of PD is diverse and complex, many researchers have created PD-related research resources. However, resources for brain and PD studies are still lacking. Therefore, we have constructed a database of PD-related gene and genetic variations using the substantia nigra (SN) in PD and normal tissues. In addition, we integrated PD-related information from several resources. RESULTS: We collected the 6,130 SN expressed sequenced tags (ESTs) from brain SN normal tissues and PD patients SN tissues using full-cDNA library and normalized cDNA library construction methods from our previous study. The SN ESTs were clustered in 2,951 unigene clusters and assigned in 2,678 genes. We then found up-regulated 57 genes and down-regulated 48 genes by comparing normal and PD SN ESTs frequencies with over 0.9 cut-off probability of differential expression based on the Audic and Claverie method. In addition, we integrated disease-related information from public resources. To examine the characteristics of these PD-related genes, we analyzed alternative splicing events, single nucleotide polymorphism (SNP) markers located in the gene regions, repeat elements, gene regulation elements, and pathways and protein-protein interaction networks. CONCLUSION: We constructed the PDbase database to capture the PD-related gene, genetic variation, and functional elements. This database contains 2,698 PD-related genes through ESTs discovered from human normal and PD patients SN tissues, and through integrating several public resources. PDbase provides the mitochondrion proteins, microRNA gene regulation elements, single nucleotide polymorphisms (SNPs) markers within PD-related gene structures, repeat elements, and pathways and networks with protein-protein interaction information. The PDbase information can aid in understanding the causation of PD. It is available at http://bioportal.kobic.re.kr/PDbase/. Supplementary data is available at http://bioportal.kobic.re.kr/PDbase/suppl.jsp.


Assuntos
Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Variação Genética , Doença de Parkinson/genética , Substância Negra/química , DNA Complementar/química , DNA Complementar/genética , Regulação para Baixo , Biblioteca Gênica , Humanos , Internet , Regulação para Cima
18.
J Microbiol ; 57(11): 1019-1024, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31659687

RESUMO

Enterococci are Gram-positive facultative anaerobic bacteria that colonize the oral cavity and gastrointestinal tract. Enterococcal infections, mainly caused by Enterococcus faecalis and Enterococcus faecium, include apical periodontitis, endocarditis, and bloodstream infections. Recently, vancomycinresistant Enterococci are considered major pathogens that are common but difficult to treat, especially in nosocomial settings. Moreover, E. faecalis is closely associated with recurrent endodontic infections and failed endodontic treatment. In this study, we investigated the effects of short-chain fatty acids (SCFAs), acetate, propionate, and butyrate, which are metabolites fermented by gut microbiota, on the growth of Enterococci. Enterococci were cultured in the presence or absence of acetate, propionate, or butyrate, and the optical density at 600 nm was measured to determine bacterial growth. The minimum inhibitory concentration/minimum bactericidal concentration test was conducted. Bacteria were treated with a SCFA, together with clinically used endodontic treatment methods such as triple antibiotics (metronidazole, minocycline, and ciprofloxacin) and chlorhexidine gluconate (CHX) to determine the effects of combination treatment. Of the SCFAs, propionate had a bacteriostatic effect, inhibiting the growth of E. faecalis in a dose-dependent manner and also that of clinical strains of E. faecalis isolated from dental plaques. Meanwhile, acetate and butyrate had minimal effects on E. faecalis growth. Moreover, propionate inhibited the growth of other Enterococci including E. faecium. In addition, combination treatment of propionate and triple antibiotics led to further growth inhibition, whereas no cooperative effect was observed at propionate plus CHX. These results indicate that propionate attenuates the growth of Enterococci, suggesting propionate as a potential agent to control Enterococcal infections, especially when combined with triple antibiotics.


Assuntos
Antibacterianos/farmacologia , Enterococcus/efeitos dos fármacos , Propionatos/farmacologia , Acetatos/farmacologia , Butiratos/farmacologia , Clorexidina/análogos & derivados , Ciprofloxacina/farmacologia , Combinação de Medicamentos , Enterococcus/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/crescimento & desenvolvimento , Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia
19.
Front Microbiol ; 10: 1363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275281

RESUMO

Staphylococcus aureus causes various diseases including skin and soft tissue infections, pneumonia, gastroenteritis, and sepsis. Antibiotic-resistant S. aureus such as methicillin-resistant S. aureus (MRSA) and multidrug-resistant S. aureus is a serious threat in healthcare-associated settings and in the communities. In this study, we investigated the effects of short-chain fatty acids, metabolites produced by commensal bacteria, on the growth of S. aureus both in vitro and in vivo. Sodium propionate (NaP) most potently inhibited the growth of MRSA and multidrug-resistant clinical isolates. Of note, only NaP, but not sodium acetate (NaA) or sodium butyrate (NaB), ameliorated MRSA skin infection, significantly lowering bacterial load, excessive cytokine production, and the size and weight of abscesses approximately by twofold. In addition, interestingly, S. aureus deficient of lipoteichoic acids (LTA) or wall teichoic acids (WTA), which are important in bacterial physiology and antimicrobial susceptibility, was more susceptible to NaP than the wild-type. Furthermore, S. aureus deficient of D-alanine motifs common in LTA and WTA was more susceptible to NaP, its growth being almost completely inhibited. Concordantly, MRSA treated with an inhibitor of D-alanylation on LTA and WTA was more susceptible to NaP, and co-treatment of NaP and a D-alanylation inhibitor further decreased the pathology of MRSA skin infection. Collectively, these results demonstrate that NaP ameliorates MRSA skin infection by attenuating the growth of S. aureus, and suggest an alternative combination treatment strategy against S. aureus infection.

20.
Immune Netw ; 19(2): e9, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31089436

RESUMO

Staphylococcus aureus, a Gram-positive pathogen, can cause severe inflammation in humans, leading to various life-threatening diseases. The lipoprotein is a major virulence factor in S. aureus-induced infectious diseases and is responsible for excessive inflammatory mediators such as nitric oxide (NO). Short-chain fatty acids (SCFAs) including butyrate, propionate, and acetate are microbial metabolites in the gut that are known to have anti-inflammatory effects in the host. In this study, we investigated the effects of SCFAs on S. aureus lipoprotein (Sa.LPP)-induced NO production in mouse macrophages. Butyrate and propionate, but not acetate, inhibited Sa.LPP-induced production of NO in RAW 264.7 cells and bone marrow-derived macrophages. Butyrate and propionate inhibited Sa.LPP-induced expression of inducible NO synthase (iNOS). However, acetate did not show such effects under the same conditions. Furthermore, butyrate and propionate, but not acetate, inhibited Sa.LPP-induced activation of NF-κB, expression of IFN-ß, and phosphorylation of STAT1, which are essential for inducing transcription of iNOS in macrophages. In addition, butyrate and propionate induced histone acetylation at lysine residues in the presence of Sa.LPP in RAW 264.7 cells. Moreover, Sa.LPP-induced NO production was decreased by histone deacetylase (HDAC) inhibitors. Collectively, these results suggest that butyrate and propionate ameliorate the inflammatory responses caused by S. aureus through the inhibition of NF-κB, IFN-ß/STAT1, and HDAC, resulting in attenuated NO production in macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA