Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 134(40): 16476-9, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22998588

RESUMO

The activity and stability of Pt(5)Gd for the oxygen reduction reaction (ORR) have been studied, using a combination of electrochemical measurements, angle-resolved X-ray photoelectron spectroscopy (AR-XPS), and density functional theory calculations. Sputter-cleaned, polycrystalline Pt(5)Gd shows a 5-fold increase in ORR activity, relative to pure Pt at 0.9 V, approaching the most active in the literature for catalysts prepared in this way. AR-XPS profiles after electrochemical measurements in 0.1 M HClO(4) show the formation of a thick Pt overlayer on the bulk Pt(5)Gd, and the enhanced ORR activity can be explained by means of compressive strain effects. Furthermore, these novel bimetallic electrocatalysts are highly stable, which, in combination with their enhanced activity, makes them very promising for the development of new cathode catalysts for fuel cells.

2.
J Am Chem Soc ; 133(14): 5485-91, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417329

RESUMO

To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔE(OH), were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu into Pt(111) resulted in an 8-fold improvement in oxygen reduction activity. The most optimal catalyst for oxygen reduction has an ΔE(OH) ≈ 0.1 eV weaker than that of pure Pt, validating earlier theoretical predictions.


Assuntos
Ligas/química , Oxigênio/química , Platina/química , Cobre/química , Eletroquímica , Modelos Moleculares , Conformação Molecular , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA