Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(3): 4504-4522, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771027

RESUMO

We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spectrometer for planetary exploration (SPEX) airborne and research scanning polarimeter (RSP) measurements, where SPEX airborne was used as a proxy of hyperspectral radiometers, and RSP as the MAP. The hyperspectral remote sensing reflectance obtained from POLYAC is accurate when compared to Aerosol Robotic Network (AERONET), and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. POLYAC provides a robust alternative atmospheric correction algorithm for hyperspectral or multi-spectral radiometric measurements for scenes involving coastal oceans and/or absorbing aerosols, where traditional atmospheric correction algorithms are less reliable.

2.
Opt Express ; 28(18): 25682-25705, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906854

RESUMO

Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission's Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA