Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 070401, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142306

RESUMO

Quantum mechanics postulates that measuring the qubit's wave function results in its collapse, with the recorded discrete outcome designating the particular eigenstate that the qubit collapsed into. We show that this picture breaks down when the qubit is strongly driven during measurement. More specifically, for a fast evolving qubit the measurement returns the time-averaged expectation value of the measurement operator, erasing information about the initial state of the qubit while completely suppressing the measurement backaction. We call this regime quantum rifling, as the fast spinning of the Bloch vector protects it from deflection into either of its eigenstates. We study this phenomenon with two superconducting qubits coupled to the same probe field and demonstrate that quantum rifling allows us to measure either one of the qubits on demand while protecting the state of the other from measurement backaction. Our results allow for the implementation of selective readout multiplexing of several qubits, contributing to the efficient scaling up of quantum processors for future quantum technologies.

2.
Phys Rev Lett ; 123(15): 150501, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702287

RESUMO

We propose and experimentally realize a technique to measure the transfer function of a control line in the frequency domain using a qubit as a vector network analyzer. Our method requires coupling the line under test to the longitudinal component of the Hamiltonian of the qubit and the ability to induce Rabi oscillations through simultaneous driving of the transverse component. The method can be used to increase the fidelity of entangling gates in a quantum processor. We have demonstrated that by characterizing the "flux" control line of a superconducting transmon qubit in the range from 1 to 450 MHz and using this characterization to improve the fidelity of an entangling cphase gate between two transmon qubits.

3.
Phys Rev Lett ; 121(12): 123601, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296135

RESUMO

Nonreciprocal devices are a key element for signal routing and noise isolation. Rapid development of quantum technologies has boosted the demand for a new generation of miniaturized and low-loss nonreciprocal components. Here, we use a pair of tunable superconducting artificial atoms in a 1D waveguide to experimentally realize a minimal passive nonreciprocal device. Taking advantage of the quantum nonlinear behavior of artificial atoms, we achieve nonreciprocal transmission through the waveguide in a wide range of powers. Our results are consistent with theoretical modeling showing that nonreciprocity is associated with the population of the two-qubit nonlocal entangled quasidark state, which responds asymmetrically to incident fields from opposing directions. Our experiment highlights the role of quantum correlations in enabling nonreciprocal behavior and opens a path to building passive quantum nonreciprocal devices without magnetic fields.

4.
Phys Rev Lett ; 119(24): 240501, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286749

RESUMO

Random numbers are required for a variety of applications from secure communications to Monte Carlo simulation. Yet randomness is an asymptotic property, and no output string generated by a physical device can be strictly proven to be random. We report an experimental realization of a quantum random number generator (QRNG) with randomness certified by quantum contextuality and the Kochen-Specker theorem. The certification is not performed in a device-independent way but through a rigorous theoretical proof of each outcome being value indefinite even in the presence of experimental imperfections. The analysis of the generated data confirms the incomputable nature of our QRNG.

5.
Nat Commun ; 7: 12930, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698351

RESUMO

Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA