Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nitric Oxide ; 131: 1-7, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513266

RESUMO

Besides enhanced feeding, the orexigenic peptide ghrelin activates the mesolimbic dopamine system to cause reward as measured by locomotor stimulation, dopamine release in nucleus accumbens shell (NAcS), and conditioned place preference. Although the ventral tegmental area (VTA) appears to be a central brain region for this ghrelin-reward, the underlying mechanisms within this area are unknown. The findings that the gaseous neurotransmitter nitric oxide (NO) modulate the ghrelin enhanced feeding, led us to hypothesize that ghrelin increases NO levels in the VTA, and thereby stimulates reward-related behaviors. We initially demonstrated that inhibition of NO synthesis blocked the ghrelin-induced activation of the mesolimbic dopamine system. We then established that antagonism of downstream signaling of NO in the VTA, namely sGC, prevents the ability of ghrelin to stimulate the mesolimbic dopamine system. The association of ghrelin to NO was further strengthened by in vivo electrochemical recordings showing that ghrelin enhances the NO release in the VTA. Besides a GABAB -receptor agonist, known to reduce NO and cGMP, blocks the stimulatory properties of ghrelin. The present series of experiments reveal that ablated NO signaling, through pharmacologically inhibiting the production of NO and/or cGMP, prevents the ability of ghrelin to induced reward-related behaviors.


Assuntos
Dopamina , Grelina , Óxido Nítrico , Recompensa , Área Tegmentar Ventral , Dopamina/metabolismo , Grelina/farmacologia , Grelina/fisiologia , Óxido Nítrico/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Camundongos , Ratos , Comportamento Animal
2.
Alcohol Clin Exp Res ; 46(12): 2149-2159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316764

RESUMO

Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Alcoolismo , Grelina , Hepatopatias Alcoólicas , Humanos
3.
FASEB J ; 34(11): 14440-14457, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32892421

RESUMO

Nerve growth factor (NGF) is critical for the development and maintenance of the peripheral sympathetic neurons. NGF is also involved in the ovarian sympathetic innervation and in the development and maintenance of folliculogenesis. Women with the endocrine disorder, polycystic ovary syndrome (PCOS), have an increased sympathetic nerve activity and increased ovarian NGF levels. The role of ovarian NGF excess in the PCOS pathophysiology and in the PCOS-related features is unclear. Here, using transgenic mice overexpressesing NGF in the ovarian theca cells (17NF mice), we assessed the female embryonic development, and the reproductive and metabolic profile in adult females. Ovarian NGF excess caused growth restriction in the female fetuses, and a delayed gonocyte and primary oocyte maturation. In adulthood, the 17NF mice displayed irregular estrous cycles and altered ovarian expression of steroidogenic and epigenetic markers. They also exhibited an increased sympathetic output with increased circulating dopamine, and metabolic dysfunction reflected by aberrant adipose tissue morphology and function, impaired glucose metabolism, decreased energy expenditure, and hepatic steatosis. These findings indicate that ovarian NGF excess leads to adverse fetal development and to reproductive and metabolic complications in adulthood, mirroring common features of PCOS. This work provides evidence that NGF excess may be implicated in the PCOS pathophysiology.


Assuntos
Desenvolvimento Fetal , Fator de Crescimento Neural/genética , Ovário/metabolismo , Síndrome do Ovário Policístico/genética , Animais , Células Cultivadas , Dopamina/metabolismo , Ciclo Estral , Feminino , Camundongos , Fator de Crescimento Neural/metabolismo , Oogênese , Ovário/embriologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Regulação para Cima
4.
Horm Behav ; 127: 104885, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166561

RESUMO

Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Encéfalo/metabolismo , Calcitonina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Neuropeptídeos/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores Dopaminérgicos/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
5.
Addict Biol ; 26(2): e12910, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383257

RESUMO

Alcohol use disorder is a complex neuropsychiatric disorder affecting both males and females worldwide; however, the efficacy of current pharmacotherapies varies. Recent advances show that gut-brain peptides, like amylin, regulate alcohol behavioural responses by acting on brain areas involved in alcohol reward processes. Thus, the activation of amylin receptors (AMYRs) by salmon calcitonin (sCT) decreases alcohol behaviours in male rodents. Given that sCT also activates the sole calcitonin receptor (CTR), studies of more selective AMYR agonists in both male and female rodents are needed to explore amylinergic modulation of alcohol behaviours. Therefore, we investigated the effects of repeated administration of a selective long-acting AMYR agonist, NNC0174-1213 (AM1213), on alcohol, water and food intake, as well as body weight in male and female rats chronically exposed to alcohol. We confirm our previous studies with sCT in male rats, as repeated AM1213 administration for 2 weeks initially decreased alcohol intake in both male and female rats. However, this reduction ceases in both sexes on later sessions, accompanied by an increase in males. AM1213 reduced food intake and body weight in both male and female rats, with sustained body weight loss in males after discontinuation of the treatment. Moreover, AM1213 administration for 3 or 7 days, differentially altered dopamine, serotonin and their metabolites in the reward-related areas in males and females, providing tentative, but different, downstream mechanism through which selective activation of AMYR may alter alcohol intake. Our data provide clarified insight into the importance of AMYRs for alcohol intake regulation in both sexes.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Agonistas dos Receptores da Amilina/farmacologia , Peso Corporal/efeitos dos fármacos , Calcitonina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Água , Alcoolismo/tratamento farmacológico , Animais , Feminino , Masculino , Ratos , Ratos Wistar , Recompensa
6.
Addict Biol ; 26(3): e12953, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32770792

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex4), liraglutide and dulaglutide, regulate glucose homeostasis and are thus used to treat diabetes type II. GLP-1 also contributes towards a variety of additional physiological functions, including suppression of reward and improvement of learning. Acute activation of GLP-1R in the nucleus accumbens (NAc) shell, an area essential for motivation, reduces the motivation to consume sucrose or alcohol when assessed in a simple motor task. However, the effects of repeated administration of the different GLP-1R agonists on behaviours in a more complex motor task are unknown. The aim was therefore to investigate the effects of repeated Ex4, liraglutide or dulaglutide on the motivation and learning of a complex motor tasks such as skilled reach foraging in the Montoya staircase test. To explore the neurophysiological correlates of the different GLP-1R agonists on motivation, ex vivo electrophysiological recordings were conducted. In rats with an acquired skilled reach performance, Ex4 or liraglutide but not dulaglutide reduced the motivation of skilled reach foraging. In trained rats, Ex4 infusion into NAc shell decreased this motivated behaviour, and both Ex4 and liraglutide supressed the evoked field potentials in NAc shell. In rats without prior Montoya experience, dulaglutide but not Ex4 or liraglutide enhanced the learning of skilled reach foraging. Taken together, these findings indicate that the tested GLP-1R agonists have different behavioural outcomes depending on the context.


Assuntos
Etanol/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Etanol/farmacologia , Exenatida/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Liraglutida/farmacologia , Masculino , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Recompensa
7.
Horm Behav ; 124: 104778, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32450068

RESUMO

Besides reducing food intake and controlling energy balance, glucagon-like peptide-1 (GLP-1) suppresses the reinforcing properties of palatable foods and addictive drugs. This reduction in reward involves activation of GLP-1 receptors (GLP-1R) within areas processing natural and artificial rewards, including the laterodorsal tegmental area (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc) shell. These areas are part of a neurocircuitry mediating reward from addictive drugs and natural rewards including sexual behaviors. The male sexual encounter with a female includes three different stages: a pre-sexual interaction phase with social behaviors, which is followed by a sexual interaction phase with mounting and intromission of the female, and ends with a post-sexual interaction phase characterized by self-grooming behaviors. Albeit GLP-1 modulates reward, the influence of GLP-1R activation on sexual interaction is unknown. Thus, we infused the GLP-1R agonist, exendin-4 (Ex4), into sub-regions of the reward neurocircuitry in sexually naïve male mice and recorded their novel interaction with an estrus female. We found that Ex4 into the LDTg, posterior VTA or NAc shell reduces pre-sexual interaction behaviors and activation of GLP-1R in the LDTg or posterior VTA decreases sexual interaction behaviors. Contrarily, Ex4 infusion into anterior VTA does not influence these behaviors. Furthermore, self-grooming behaviors are not influenced by activation of GLP-1R in the aforementioned areas. These data highlight that activation of GLP-1R in reward-related areas reduces different aspects of the sexual interaction chain and further supports a role of the GLP-1R in social behaviors.


Assuntos
Encéfalo/efeitos dos fármacos , Exenatida/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/fisiologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Recompensa , Comportamento Social , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
Addict Biol ; 25(3): e12764, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31069918

RESUMO

Albeit neuromedin U (NMU) attenuates alcohol-mediated behaviours, its mechanisms of action are poorly defined. Providing that the behavioural effects of alcohol are processed within the nucleus accumbens (NAc) shell, anterior ventral tegmental area (aVTA), and laterodorsal tegmental area (LDTg), we assessed the involvement of NMU signalling in the aforementioned areas on alcohol-mediated behaviours in rodents. We further examined the expression of NMU and NMU receptor 2 (NMUR2) in NAc and the dorsal striatum of high compared with low alcohol-consuming rats, as this area is of importance in the maintenance of alcohol use disorder (AUD). Finally, we investigated the involvement of NAc shell, aVTA and LDTg in the consumption of chow and palatable peanut butter, to expand the link between NMU and reward-related behaviours. We demonstrated here, that NMU into the NAc shell, but not aVTA or LDTg, blocked the ability of acute alcohol to cause locomotor stimulation and to induce memory retrieval of alcohol reward, as well as reduced peanut butter in mice. In addition, NMU into NAc shell decreased alcohol intake in rats. On a molecular level, we found increased NMU and decreased NMUR2 expression in the dorsal striatum in high compared with low alcohol-consuming rats. Both aVTA and LDTg, rather than NAc shell, were identified as novel sites of action for NMU's anorexigenic properties in mice based on NMU's ability to selectively reduce chow intake when injected to these areas. Collectively, these data indicate that NMU signalling in different brain areas selectively modulates different behaviours.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Comportamento Alimentar/fisiologia , Locomoção/fisiologia , Neostriado/metabolismo , Neuropeptídeos/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Neurotransmissores/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico , Ingestão de Alimentos , Etanol/administração & dosagem , Camundongos , Ratos , Tegmento Mesencefálico/metabolismo
9.
Int J Obes (Lond) ; 43(11): 2176-2188, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30670847

RESUMO

BACKGROUND/OBJECTIVES: Maternal obesity together with androgen excess in mice negatively affects placental function and maternal and fetal liver function as demonstrated by increased triglyceride content with dysfunctional expression of enzymes and transcription factors involved in de novo lipogenesis and fat storage. To identify changes in molecular pathways that might promote diseases in adulthood, we performed a global proteomic analysis using a liquid-chromatography/mass-spectrometry system to investigate total and phosphorylated proteins in the placenta and fetal liver in a mouse model that combines maternal obesity with maternal androgen excess. METHODS: After ten weeks on a control diet (CD) or high fat/high sugar-diet, dams were mated with males fed the CD. Between gestational day (GD) 16.5 and GD 18.5, mice were injected with vehicle or dihydrotestosterone (DHT) and sacrificed at GD 18.5 prior to dissection of the placentas and fetal livers. Four pools of female placentas and fetal livers were subjected to a global proteomic analysis. Total and phosphorylated proteins were filtered by ANOVA q < 0.05, and this was followed by two-way ANOVA to determine the effect of maternal obesity and/or androgen exposure. RESULTS: In placenta, phosphorylated ATP-citrate synthase was decreased due to maternal obesity, and phosphorylated catechol-O-methyltransferase (COMT) was differentially expressed due to the interaction between maternal diet and DHT exposure. In fetal liver, five total proteins and 48 proteins phosphorylated in one or more sites, were differentially expressed due to maternal obesity or androgen excess. In fetal liver, phosphorylated COMT expression was higher in fetus exposed to maternal obesity. CONCLUSION: These results suggest a common regulatory mechanism of catecholamine metabolism in the placenta and the fetal liver as demonstrated by higher phosphorylated COMT expression in the placenta and fetal liver from animals exposed to diet-induced maternal obesity and lower expression of phosphorylated COMT in animals exposed to maternal androgen excess.


Assuntos
Catecol O-Metiltransferase , Di-Hidrotestosterona/farmacologia , Fígado , Obesidade/metabolismo , Placenta , Animais , Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/efeitos dos fármacos , Catecol O-Metiltransferase/metabolismo , Dieta Hiperlipídica , Açúcares da Dieta , Feminino , Feto/efeitos dos fármacos , Feto/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/enzimologia , Gravidez
10.
Addict Biol ; 24(3): 388-402, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29405517

RESUMO

Alcohol expresses its reinforcing properties by activating areas of the mesolimbic dopamine system, which consists of dopaminergic neurons projecting from the ventral tegmental area to the nucleus accumbens. The findings that reward induced by food and addictive drugs involve common mechanisms raise the possibility that gut-brain hormones, which control appetite, such as amylin, could be involved in reward regulation. Amylin decreases food intake, and despite its implication in the regulation of natural rewards, tenuous evidence support amylinergic mediation of artificial rewards, such as alcohol. Therefore, the present experiments were designed to investigate the effect of salmon calcitonin (sCT), an amylin receptor agonist and analogue of endogenous amylin, on various alcohol-related behaviours in rodents. We showed that acute sCT administration attenuated the established effects of alcohol on the mesolimbic dopamine system, particularly alcohol-induced locomotor stimulation and accumbal dopamine release. Using the conditioned place preference model, we demonstrated that repeated sCT administration prevented the expression of alcohol's rewarding properties and that acute sCT administration blocked the reward-dependent memory consolidation. In addition, sCT pre-treatment attenuated alcohol intake in low alcohol-consuming rats, with a more evident decrease in high alcohol consumers in the intermittent alcohol access model. Lastly, sCT did not alter peanut butter intake, blood alcohol concentration and plasma corticosterone levels in mice. Taken together, the present data support that amylin signalling is involved in the expression of alcohol reinforcement and that amylin receptor agonists could be considered for the treatment of alcohol use disorder in humans.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/fisiologia , Animais , Encéfalo/fisiologia , Calcitonina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Intestinos/fisiologia , Sistema Límbico/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/antagonistas & inibidores , Recompensa
11.
FASEB J ; 31(8): 3288-3297, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28404742

RESUMO

A single bout of low-frequency electroacupuncture (EA) causing muscle contractions increases whole-body glucose uptake in insulin-resistant rats. We explored the underlying mechanism of this finding and whether it can be translated into clinical settings. Changes in glucose infusion rate (GIR) were measured by euglycemic-hyperinsulinemic clamp during and after 45 min of low-frequency EA in 21 overweight/obese women with polycystic ovary syndrome (PCOS) and 21 controls matched for age, weight, and body mass index (experiment 1) and in rats receiving autonomic receptor blockers (experiment 2). GIR was higher after EA in controls and women with PCOS. Plasma serotonin levels and homovanillic acid, markers of vagal activity, decreased in both controls and patients with PCOS. Adipose tissue expression of pro-nerve growth factor (proNGF) decreased, and the mature NGF/proNGF ratio increased after EA in PCOS, but not in controls, suggesting increased sympathetic-driven adipose tissue metabolism. Administration of α-/ß-adrenergic receptor blockers in rats blocked the increase in GIR in response to EA. Muscarinic and dopamine receptor antagonist also blocked the response but with slower onset. In conclusion, a single bout of EA increases whole-body glucose uptake by activation of the sympathetic and partly the parasympathetic nervous systems, which could have important clinical implications for the treatment of insulin resistance.-Benrick, A., Kokosar, M., Hu, M., Larsson, M., Maliqueo, M., Marcondes, R. R., Soligo, M., Protto, V., Jerlhag, E., Sazonova, A., Behre, C. J., Højlund, K., Thorén, P., Stener-Victorin, E. Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Glicemia , Eletroacupuntura , Glucose/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Adulto , Animais , Antagonistas de Dopamina/farmacologia , Feminino , Técnica Clamp de Glucose , Humanos , Antagonistas Muscarínicos/farmacologia , Antagonistas de Entorpecentes/farmacologia , Síndrome do Ovário Policístico/metabolismo , Ratos , Adulto Jovem
12.
Alcohol Alcohol ; 52(4): 425-430, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481975

RESUMO

AIMS: The orexigenic peptide ghrelin may enhance the incentive value of food-, drug- and alcohol-related rewards. Consistent with preclinical findings, human studies indicate a role of ghrelin in alcohol use disorders (AUD). In the present study an a priori hypothesis-driven analysis was conducted to investigate whether a Leu72Met missense polymorphism (rs696217) in the prepro-ghrelin gene (GHRL), is associated with AUD, alcohol consumption and subjective responses to alcohol. METHOD: Association analysis was performed using the National Institute on Alcohol Abuse and Alcoholism (NIAAA) clinical sample, comprising AUD individuals and controls (N = 1127). Then, a post-hoc analysis using data from a human laboratory study of intravenous alcohol self-administration (IV-ASA, N = 144) was performed to investigate the association of this SNP with subjective responses following a fixed dose of alcohol (priming phase) and alcohol self-administration (ad libitum phase). RESULTS: The case-control study revealed a trend association (N = 1127, OR = 0.665, CI = 0.44-1.01, P = 0.056) between AUD diagnosis and Leu72Met. In AUD subjects, the SNP was associated with significantly lower average drinks per day (n = 567, ß = -2.49, 95% CI = -4.34 to -0.64, P = 0.008) and significantly fewer heavy drinking days (n = 567, ß = -12.00, 95% CI = -19.10 to -4.89, P < 0.001). The IV-ASA study further revealed that 72Met carriers had greater subjective responses to alcohol (P < 0.05) when compared to Leu72Leu both at priming and during ad lib self-administration. CONCLUSION: Although preliminary, these findings suggest that the Leu72Leu genotype may lead to increased risk of AUD possibly via mechanisms involving a lower response to alcohol resulting in excessive alcohol consumption. Further investigations are warranted. SHORT SUMMARY: We investigated whether a Leu72Met missense polymorphism in the prepro-ghrelin gene, is associated with alcohol use disorder, alcohol consumption and subjective responses to alcohol. Although preliminary, results suggest that the Leu72Leu genotype may lead to increased risk of alcohol use disorder possibly via mechanisms involving a lower response to alcohol.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/genética , Grelina/genética , Administração Intravenosa , Adulto , Estudos de Casos e Controles , Etanol/administração & dosagem , Etanol/farmacologia , Predisposição Genética para Doença/genética , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Autoadministração , Adulto Jovem
13.
Addict Biol ; 22(3): 640-651, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26769653

RESUMO

By investigating the neurochemical mechanisms through which alcohol activates the brain reward systems, novel treatment strategies for alcohol use disorder (AUD), a chronic relapsing disease, can be developed. In contrast to the common view of the function of gut-brain peptides, such as neuromedin U (NMU), to regulate food intake and appetite, a novel role in reinforcement mediation has been implied. The anorexigenic effects of NMU are mediated via NMU2 receptors, preferably in the arcuate nucleus and paraventricular nucleus. The expression of NMU2 receptors is also expressed in several reward-related areas in the brain, suggesting a role in reward regulation. The present experiments were therefore set up to investigate the effect of intracerebroventricular administration of NMU on alcohol-mediated behaviors in rodents. We found that central administration of NMU attenuated alcohol-induced locomotor stimulation, accumbal dopamine release and the expression of conditioned place preference in mice. In addition, NMU dose dependently decreased alcohol intake in high, but not in low, alcohol-consuming rats. Central NMU administration did not alter the blood alcohol concentrations nor change the corticosterone levels in rodents. Given that AUD is a major health-care challenge causing an enormous cost to society and novel treatment strategies are warranted, our data suggest that NMU analogues deserve to be evaluated as novel treatment of AUD in humans.


Assuntos
Consumo de Bebidas Alcoólicas , Comportamento Animal/efeitos dos fármacos , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Etanol/administração & dosagem , Neuropeptídeos/farmacologia , Recompensa , Animais , Masculino , Modelos Animais , Neuropeptídeos/administração & dosagem , Ratos
14.
Alcohol Alcohol ; 51(2): 121-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26330568

RESUMO

AIMS: Ghrelin initially emerged as a gut-brain hormone controlling food intake, meal initiation and appetite mainly via hypothalamic circuits in both rodents and humans. The findings that ghrelin receptors (GHS-R1A) are expressed in reward-related areas, including the nucleus accumbens (NAc) and ventral tegmental area (VTA), suggest that ghrelin is a novel reward regulator. Indeed, ghrelin signalling mediates the rewarding and motivational properties of addictive drugs. In addition, daily co-administration of a GHS-R1A antagonist and various addictive drugs prevents the drug-induced locomotor sensitization in rats. METHODS: The present series of experiment were designed to evaluate the effect of repeated pharmacological GHS-R1A suppression on drug-induced locomotor stimulation in more detail. RESULTS: We showed that sub-chronic pre-treatment of the GHS-R1A antagonist, JMV2959, attenuated the ability of acute administration of alcohol as well as of amphetamine to stimulate locomotion. However, there was no effect of sub-chronic JMV2959 treatment on locomotor activity per se or on the expression of the GHS-R1A gene (Ghsr) in the VTA or the NAc compared with vehicle treatment. In addition, sub-chronic ghrelin treatment caused a locomotor sensitization. CONCLUSIONS: While previous research has pinpointed ghrelin as an appetite regulator the present study together with previous studies suggest that ghrelin signalling modulates various reward-mediated behaviours in rodents. Collectively, this suggests that the GHS-R1A could be a key target for novel treatment strategies for addiction.


Assuntos
Anfetamina/administração & dosagem , Etanol/administração & dosagem , Glicina/análogos & derivados , Locomoção/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , Triazóis/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Glicina/administração & dosagem , Locomoção/fisiologia , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de Grelina/biossíntese , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
15.
Addict Biol ; 21(2): 348-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25475101

RESUMO

Ghrelin, a gut-brain signal, is well known to regulate energy homeostasis, food intake and appetite foremost via hypothalamic ghrelin receptors (GHS-R1A). In addition, ghrelin activates the reward systems in the brain, namely the mesolimbic dopamine system, and regulates thereby the rewarding properties of addictive drugs as well as of palatable foods. Given that the mesolimbic dopamine system mandates the reinforcing properties of addictive drugs and natural rewards, such as sexual behaviour, we hypothesize that ghrelin plays an important role for male sexual behaviour, a subject for the present studies. Herein we show that ghrelin treatment increases, whereas pharmacological suppression (using the GHSR-1A antagonist JMV2959) or genetic deletion of the GHS-R1A in male mice decreases the sexual motivation for as well as sexual behaviour with female mice in oestrus. Pre-treatment with L-dopa (a dopamine precursor) prior to treatment with JMV2959 significantly increased the preference for female mouse compared with vehicle treatment. On the contrary, treatment with 5-hydroxythyptohan (a precursor for serotonin) prior to treatment with JMV2959 decreased the sexual motivation compared to vehicle. In separate experiments, we show that ghrelin and GHS-R1A antagonism do not affect the time spent over female bedding as measured in the androgen-dependent bedding test. Collectively, these data show that the hunger hormone ghrelin and its receptor are required for normal sexual behaviour in male mice and that the effects of the ghrelin signalling system on sexual behaviour involve dopamine neurotransmission.


Assuntos
Grelina/fisiologia , Comportamento Sexual Animal/fisiologia , 5-Hidroxitriptofano/farmacologia , Análise de Variância , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/fisiologia , Dopaminérgicos/farmacologia , Feminino , Grelina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Levodopa/farmacologia , Masculino , Preferência de Acasalamento Animal/fisiologia , Camundongos , Camundongos Knockout , Motivação , Tempo de Reação , Receptores de Grelina/antagonistas & inibidores , Transdução de Sinais/fisiologia , Triazóis/farmacologia
16.
Addict Biol ; 21(2): 422-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26303264

RESUMO

The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Reforço Psicológico , Recompensa , Alcoolismo/tratamento farmacológico , Animais , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Camundongos , Microdiálise/instrumentação , Núcleo Accumbens/efeitos dos fármacos , Próteses e Implantes , Ratos , Autoadministração
17.
Addict Biol ; 21(2): 481-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26059200

RESUMO

The multifaceted gut-brain peptide ghrelin and its receptor (GHSR-1a) are implicated in mechanisms regulating not only the energy balance but also the reward circuitry. In our pre-clinical models, we have shown that ghrelin increases whereas GHSR-1a antagonists decrease alcohol consumption and the motivation to consume alcohol in rodents. Moreover, ghrelin signaling is required for the rewarding properties of addictive drugs including alcohol and nicotine in rodents. Given the hereditary component underlying addictive behaviors and disorders, we sought to investigate whether single nucleotide polymorphisms (SNPs) located in the pre-proghrelin gene (GHRL) and GHSR-1a gene (GHSR) are associated with alcohol use, measured by the alcohol use disorders identification test (AUDIT) and smoking. Two SNPs located in GHRL, rs4684677 (Gln90Leu) and rs696217 (Leu72Met), and one in GHSR, rs2948694, were genotyped in a subset (n = 4161) of a Finnish population-based cohort, the Genetics of Sexuality and Aggression project. The effect of these SNPs on AUDIT scores and smoking was investigated using linear and logistic regressions, respectively. We found that the minor allele of the rs2948694 SNP was nominally associated with higher AUDIT scores (P = 0.0204, recessive model) and smoking (P = 0.0002, dominant model). Furthermore, post hoc analyses showed that this risk allele was also associated with increased likelihood of having high level of alcohol problems as determined by AUDIT scores ≥ 16 (P = 0.0043, recessive model). These convergent findings lend further support for the hypothesized involvement of ghrelin signaling in addictive disorders.


Assuntos
Transtornos Relacionados ao Uso de Álcool/genética , Grelina/genética , Receptores de Grelina/genética , Fumar/genética , Adulto , Feminino , Genótipo , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética
18.
Alcohol Clin Exp Res ; 38(4): 959-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24428428

RESUMO

BACKGROUND: Development of alcohol dependence, a chronic and relapsing disease, largely depends on the effects of alcohol on the brain reward systems. By elucidating the mechanisms involved in alcohol use disorder, novel treatment strategies may be developed. Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor 1A, acts as an important regulator of energy balance. Recently ghrelin and its receptor were shown to mediate alcohol reward and to control alcohol consumption in rodents. However, the role of central versus peripheral ghrelin for alcohol reward needs to be elucidated. METHODS: Given that ghrelin mainly is produced by peripheral organs, the present study was designed to investigate the role of circulating endogenous ghelin for alcohol reward and for alcohol intake in rodents. RESULTS: We showed that the Spiegelmer NOX-B11-2, which binds and neutralizes acylated ghrelin in the periphery with high affinity and thus prevents its brain access, does not attenuate the alcohol-induced locomotor activity, accumbal dopamine release and expression of conditioned place preference in mice. Moreover, NOX-B11-2 does not affect alcohol intake using the intermittent access 20% alcohol 2-bottle-choice drinking paradigm in rats, suggesting that circulating ghrelin does not regulate alcohol intake or the rewarding properties of alcohol. In the present study, we showed however, that NOX-B11-2 reduced food intake in rats supporting a role for circulating ghrelin as physiological regulators of food intake. Moreover, NOX-B11-2 did not affect the blood alcohol concentration in mice. CONCLUSIONS: Collectively, the past and present studies suggest that central, rather than peripheral, ghrelin signaling may be a potential target for pharmacological treatment of alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas/sangue , Grelina/sangue , Recompensa , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Biomarcadores/sangue , Grelina/antagonistas & inibidores , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oligonucleotídeos/farmacologia , Ratos , Ratos Wistar
19.
Prog Neurobiol ; 236: 102615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641041

RESUMO

The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.


Assuntos
Dopamina , Ingestão de Alimentos , Núcleo Accumbens , Recompensa , Animais , Masculino , Camundongos , Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Dopamina/metabolismo , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-38755284

RESUMO

The transition to alcohol use disorder (AUD) involves persistent neuroadaptations in executive control functions primarily regulated by the medial prefrontal cortex. However, the neurophysiological correlates to behavioral manifestations of AUD are not fully defined. The association between cortical neuroadaptations and behavioral manifestations of addiction was studied using a multi-symptomatic operant model based on the DSM-5 diagnostic criteria for AUD. This model aimed to characterize an AUD-vulnerable and AUD-resistant subpopulation of outbred male Wistar rats and was combined with electrophysiological measurements in the prelimbic cortex (PL). Mirroring clinical observations, rats exhibited individual variability in their vulnerability to develop AUD-like behavior, including motivation to seek for alcohol (crit 1), increased effort to obtain the substance (crit 2), and continued drinking despite negative consequences (crit 3). Only a small subset of rats met all the aforementioned AUD criteria (3 crit, AUD-vulnerable), while a larger fraction was considered AUD-resilient (0 crit). The development of AUD-like behavior was characterized by disruptions in glutamatergic synaptic activity, involving decreased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and heightened intrinsic excitability in layers 2/3 PL pyramidal neurons. These alterations were concomitant with a significant impairment in the ability of mGlu2/3 receptors to negatively regulate glutamate release in the PL but not in downstream regions like the basolateral amygdala or nucleus accumbens core. In conclusion alterations in PL synaptic activity were strongly associated with individual addiction scores, indicating their role as potential markers of the behavioral manifestations linked to AUD psychopathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA