Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
R Soc Open Sci ; 4(6): 161004, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28680659

RESUMO

Ancient protein analysis provides clues to human life and diseases from ancient times. Here, we performed shotgun proteomics of human archeological bones for the first time, using rib bones from the Hitotsubashi site (AD 1657-1683) in Tokyo, called Edo in ancient times. The output data obtained were analysed using Gene Ontology and label-free quantification. We detected leucocyte-derived proteins, possibly originating from the bone marrow of the rib. Particularly prevalent and relatively high expression of eosinophil peroxidase suggests the influence of infectious diseases. This scenario is plausible, considering the overcrowding and unhygienic living conditions of the Edo city described in the historical literature. We also observed age-dependent differences in proteome profiles, particularly for proteins involved in developmental processes. Among them, alpha-2-HS-glycoprotein demonstrated a strong negative correlation with age. These results suggest that analysis of ancient proteins could provide a useful indicator of stress, disease, starvation, obesity and other kinds of physiological and pathological information.

3.
MAbs ; 8(4): 689-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986935

RESUMO

The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly to Cdc20, the mitotic co-activator of the APC/C, thereby inhibiting progression into anaphase. Mad2 exists in at least 2 different conformations, open-Mad2 (O-Mad2) and closed-Mad2 (C-Mad2), with the latter representing the active form that is able to bind Cdc20. Our ability to dissect Mad2 biology in vivo is limited by the absence of monoclonal antibodies (mAbs) useful for recognizing the different conformations of Mad2. Here, we describe and extensively characterize mAbs specific for either O-Mad2 or C-Mad2, as well as a pan-Mad2 antibody, and use these to investigate the different Mad2 complexes present in mitotic cells. Our antibodies validate current Mad2 models but also suggest that O-Mad2 can associate with checkpoint complexes, most likely through dimerization with C-Mad2. Furthermore, we investigate the makeup of checkpoint complexes bound to the APC/C, which indicate the presence of both Cdc20-BubR1-Bub3 and Mad2-Cdc20-BubR1-Bub3 complexes, with Cdc20 being ubiquitinated in both. Thus, our defined mAbs provide insight into checkpoint signaling and provide useful tools for future research on Mad2 function and regulation.


Assuntos
Anticorpos Monoclonais/imunologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/imunologia , Animais , Humanos , Proteínas Mad2/química , Conformação Proteica
4.
Nat Commun ; 7: 12436, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526785

RESUMO

Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the signalling networks affected by miR-625-3p. We show that the p38 MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin. Transcriptome, proteome and phosphoproteome profiles confirm inactivation of MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 6/genética , MicroRNAs/genética , Compostos Organoplatínicos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , MAP Quinase Quinase 6/metabolismo , Oxaliplatina , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA