Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 40(1): 105-16, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412610

RESUMO

Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.


Assuntos
Citocinas/metabolismo , Células Dendríticas/imunologia , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD8/metabolismo , Comunicação Celular , Galactosilceramidas/imunologia , Regulação da Expressão Gênica/imunologia , Homeostase , Inflamação/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/metabolismo
2.
Soft Matter ; 18(20): 3955-3966, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35551321

RESUMO

Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels-self-assembled networks of fibrils able to trap water molecules. Typically, these hydrogelators can form stiff gels at concentrations of 0.1 to 1.0 wt%-i.e. they consist of mainly water. The properties of these soft materials mimic those of the extracellular matrix (ECM) of biological tissue and therefore they have found many biomedical uses in tissue engineering, wound healing, drug delivery, biosensing and bioprinting applications. In drug delivery strategies related to cancer therapy, injectable hydrogels can serve as a depot formulation, where a sustained release of the chemotherapeutic from near the tumour site allows reduced doses and, therefore, decreased side effects. To further target cancer cells, folic acid-conjugated hydrogels and nanostructures are often sought, to exploit the overexpression of folate receptors on cancer cells-an approach which can allow the selective cellular uptake of an encapsulated drug. In this present study, two known dipeptide folate receptor ligands (1 and 2) recently identified from a screen of a DNA-encoded compound library, were synthesised and investigated for their hydrogelation ability and cytotoxicity. Compound 1, containing a naproxen capping group, rapidly forms hydrogels at concentrations as low as 0.03 wt%-one of the lowest critical gelation concentrations (CGCs) known for a supramolecular hydrogelator. In contrast, compound 2, which contains a 3-indolepropionic acid capping group, was unable to form hydrogels under a range of conditions and concentrations, instead forming nanospheres with diameters of 0.5 µm. Hydrogels of 1 were characterised by STEM microscopy, rheology, fluorescence spectroscopy and circular dichroism. Both compounds 1 and 2 had no impact on the proliferation of kerotinocytes (HaCaT cells) at concentrations up to 100 µM. Compound 1, containing the NSAID, was tested for anti-inflammatory activity in a human cyclooxygenase-1/2 model. The rate of the release of model drug compounds from within hydrogels of 1 was also investigated.


Assuntos
Hidrogéis , Naproxeno , Ácido Fólico , Humanos , Hidrogéis/química , Ligantes , Naproxeno/química , Naproxeno/farmacologia , Água
3.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328691

RESUMO

It is my great pleasure to be part of this Special Issue in the International Journal of Molecular Sciences-"Hydrogels in Regenerative Medicine and Other Biomedical Applications" [...].


Assuntos
Hidrogéis , Medicina Regenerativa , Hidrogéis/uso terapêutico
4.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233112

RESUMO

Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping group are particularly attractive alternatives for minimalistic low molecular weight hydrogelators. Peptides with low critical gelation concentrations (CGCs) are especially desirable, as the low weight percentage required for gelation makes them more cost-effective and reduces toxicity. In this work, three dehydrodipeptides were studied for their self-assembly properties. The results showed that all three dehydrodipeptides can form self-standing hydrogels with very low critical gelation concentrations (0.05−0.20 wt%) using a pH trigger. Hydrogels of all three dehydrodipeptides were characterised by scanning tunnelling emission microscopy (STEM), rheology, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Molecular modelling was performed to probe the structural patterns and interactions. The cytotoxicity of the new compounds was tested using human keratinocytes (HaCaT cell line). In general, the results suggest that all three compounds are non-cytotoxic, although one of the peptides shows a small impact on cell viability. In sustained release assays, the effect of the charge of the model drug compounds on the rate of cargo release from the hydrogel network was evaluated. The hydrogels provide a sustained release of methyl orange (anionic) and ciprofloxacin (neutral), while methylene blue (cationic) was retained by the network.


Assuntos
Dipeptídeos , Lisina , Aminoácidos/química , Ciprofloxacina , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Azul de Metileno , Peptídeos/química
5.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802425

RESUMO

Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, ß-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,ß-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Nanoestruturas/química , Peptídeos/química , Peptidomiméticos/química , Aminoácidos/química , Animais , Humanos , Estrutura Secundária de Proteína
6.
Soft Matter ; 16(44): 10001-10012, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32789370

RESUMO

The development of strategies to minimise the adverse side-effects of non-steroidal anti-inflammatory drugs (NSAIDs) remains a challenge for medicinal chemists. One such strategy is the development of NSAID-peptide prodrug conjugates and this conjugation to a peptide often confers the additional property of hydrogelation. This review summarises the work published by our research group, alongside other research groups, on supramolecular hydrogels consisting of short peptides conjugated to NSAIDs. Generally, supramolecular low molecular weight hydrogels (LMWHs) are composed of amphiteric molecules, usually consisting of short peptides attached to an aromatic capping group. When the aromatic capping group is switched for an NSAID to afford hybrid gelators, some conjugates exhibit retained or improved anti-inflammatory properties of the parent drug, and sometimes new and unexpected biological activities are observed. Conjugation to peptides often provides selective COX-2 inhibition over COX-1 inhibtion, which is key to retaining the anti-inflammatory benefits of NSAIDs whilst minimising gastric side-effects. Naproxen is the most commonly employed NSAID capping group, partly due to its similarity in structure to commonly employed naphthalene capping groups. Biomimetic approaches, where canonical amino acids are switched for non-natural amino acids such as d-amino acids or dehydroamino acids, are often employed, to tune the stability. The future direction for this area of research is discussed.


Assuntos
Anti-Inflamatórios não Esteroides , Hidrogéis , Aminoácidos , Naproxeno , Peptídeos
7.
EMBO Rep ; 18(1): 39-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799287

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid-dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid-presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)-CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T-cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL-22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d-mediated immunity, which can modulate tissue homeostasis and inflammatory responses.


Assuntos
Antígenos CD1d/genética , Imunidade Inata , Interleucinas/biossíntese , Ativação Linfocitária , Subpopulações de Linfócitos/metabolismo , Linfócitos/metabolismo , Animais , Apresentação de Antígeno/imunologia , Antígenos CD1d/metabolismo , Biomarcadores , Expressão Gênica , Imunofenotipagem , Metabolismo dos Lipídeos , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Transgênicos , Fenótipo , Interleucina 22
8.
Int Immunol ; 25(2): 91-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22968995

RESUMO

Although CD1d and NKT cells have been proposed to have highly conserved functions in mammals, data on functions of CD1d and NKT cells in species other than humans and rodents are lacking. Upon stimulation with the CD1d-presented synthetic antigen α-galactosylceramide, human and rodent type I invariant NKT cells release large amounts of cytokines. The two bovine CD1D (boCD1D) genes have structural features that suggest that they cannot be translated into functional proteins expressed on the cell surface. Here we provide evidence that despite an intron-exon structure and signal peptide that are different from all other known CD1 genes, boCD1D can be translated into a protein that is expressed on the cell surface. However, in vivo treatment of cattle (Bos taurus) with 0.1, 1, or 10 µg kg⁻¹ of the most commonly used α-galactosylceramide, which has a C26 fatty acid, did not lead to an increase in body temperature and serum cytokine levels of the animals. This lack of reactivity is not due to a complete inability of boCD1d to present glycosphingolipids because α-galactosylceramide variants with shorter fatty acids could be presented by boCD1d to human NKT cells in vitro. This suggests that the natural ligands of boCD1d are smaller lipids.


Assuntos
Antígenos CD1d/genética , Antígenos CD1d/imunologia , Ácidos Graxos/química , Galactosilceramidas/química , Galactosilceramidas/imunologia , Animais , Antígenos CD1d/biossíntese , Sequência de Bases , Temperatura Corporal , Bovinos , Linhagem Celular , Citocinas/sangue , Ácidos Graxos/imunologia , Expressão Gênica , Humanos , Ligantes , Camundongos , Células T Matadoras Naturais/imunologia
9.
Bioconjug Chem ; 24(4): 586-94, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23458425

RESUMO

Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching a label to a range of CD1d agonists. The flexibility of the synthetic strategy, and late-stage incorporation of the label, opens up the possibility of using this labeling approach to study the in vivo behavior of a wide range of CD1d agonists.


Assuntos
Antígenos CD1d/imunologia , Desenho de Fármacos , Galactosilceramidas/imunologia , Animais , Antígenos CD1d/química , Antígenos CD1d/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Citocinas/biossíntese , Citocinas/imunologia , Galactosilceramidas/química , Galactosilceramidas/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Molecular , Células T Matadoras Naturais/química , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia
10.
Int Immunopharmacol ; 119: 110178, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068339

RESUMO

Inflammation and endoplasmic reticulum (ER) stress are often hand in hand in the context of chronic disease. Both are activated upon perceived disturbances in homeostasis, being deleterious when intensely or chronically activated. Fisetin (FST) is a dietary flavonol that is known to possess multiple relevant bioactivities, raising the question of its potential health benefits and even its use in novel pharmacological approaches against ER stress and inflammation. To attain this prospect, some limitations to this molecule, namely its poor bioavailability and solubility, must be addressed. In an attempt to improve the biological properties of the parent molecule, we have synthesized a set of FST derivatives. These new molecules were tested along with the original compound for their ability to mitigate the activation of the signaling pathways underlying inflammation and ER stress. By reducing LPS-induced nuclear factor-kappa B (NF-κB) activation, cytokine release, inflammasome activation and reactive oxygen species (ROS) generation, FST has proven to be effective against the onset of inflammation. The molecule also decreases the activation of the unfolded protein response (UPR), as evidenced by the reduced expression of relevant UPR-related genes upon ER stress induction. Some of the tested derivatives are novel inhibitors of targets associated to inflammation and ER stress signaling, in some cases more potent than the parent compound. Furthermore, the reduced cytotoxicity of some of these molecules enabled the use of higher concentrations than that of FST, resulting in the observation of enhanced bioactivities.


Assuntos
Anti-Inflamatórios , Estresse do Retículo Endoplasmático , Flavonóis , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo
11.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
12.
Bioorg Med Chem Lett ; 22(13): 4348-52, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22652050

RESUMO

Huisgen [3+2] dipolar cycloaddition of 6″-azido-6″-deoxy-α-galactosyl ceramide 11 with a range of alkynes (or a benzyne precursor) yielded a series of triazole-containing α-galactosyl ceramide (α-GalCer) analogues in high yield. These α-GalCer analogues and the precursor azide 11 were tested for their ability to activate iNKT cells and stimulate IL-2 cytokine secretion in vitro, and IFN-γ and IL-4 cytokine secretion in vivo. Some of these analogues, specifically 11, 12b, 12f and 13, were more potent IL-2 stimulators than the prototypical CD1d agonist, α-GalCer 1. In terms of any cytokine bias, most of the triazole-containing analogues exhibited a small Th2 cytokine-biasing response relative to that shown by α-GalCer 1. In contrast, the cycloaddition precursor, namely azide 11, provided a small Th1 cytokine-biasing response.


Assuntos
Antígenos CD1d/química , Galactosilceramidas/química , Triazóis/química , Animais , Antígenos CD1d/metabolismo , Linhagem Celular , Galactosilceramidas/síntese química , Galactosilceramidas/farmacologia , Hibridomas/metabolismo , Injeções Intraperitoneais , Interferon gama/sangue , Interleucina-2/metabolismo , Interleucina-4/sangue , Camundongos , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo
13.
Gels ; 8(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354614

RESUMO

Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.

14.
J Org Chem ; 76(1): 320-3, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21155575

RESUMO

A concise route to the 6-azido-6-deoxy-α-galactosyl-phytosphingosine derivative 9 is reported. Orthogonal protection of the two amino groups allows elaboration of 9 into a range of 6-N-derivatized α-galactosyl ceramides by late-stage introduction of the acyl chain of the ceramide and the 6-N-group in the sugar headgroup. Biologically active glycolipids 6 and 8 have been synthesized to illustrate the applicability of the approach.


Assuntos
Carboidratos/química , Galactosilceramidas/química , Galactosilceramidas/síntese química , Glicolipídeos/química , Estrutura Molecular
15.
Nanomaterials (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799670

RESUMO

Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a "caged" dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand "self-delivery", through the uncaging of known biologically active dehydrodipeptides.

16.
Gels ; 7(2)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946932

RESUMO

The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.3 wt % and 0.4 wt %, using a pH trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy, which revealed a network of entangled fibers. According to rheology, the dehydrodipeptide bolaamphiphilic hydrogelators are viscoelastic materials with an elastic modulus G' that falls in the range of native tissue (0.37 kPa brain-4.5 kPa cartilage). In viability and proliferation studies, it was found that these compounds were non-toxic toward the human keratinocyte cell line, HaCaT. In sustained release assays, we studied the effects of the charge present on model drug compounds on the rate of cargo release from the hydrogel networks. Methylene blue (MB), methyl orange (MO), and ciprofloxacin were chosen as cationic, anionic, and overall neutral cargo, respectively. These studies have shown that the hydrogels provide a sustained release of methyl orange and ciprofloxacin, while methylene blue is retained by the hydrogel network.

17.
Mater Sci Eng C Mater Biol Appl ; 122: 111869, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641890

RESUMO

Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.


Assuntos
Curcumina , Hidrogéis , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
18.
Cancer Res ; 81(7): 1788-1801, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483371

RESUMO

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.


Assuntos
Antígenos CD1d/farmacologia , Anergia Clonal/efeitos dos fármacos , Galactosilceramidas/farmacologia , Imunoterapia/métodos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Antígenos CD1d/química , Antígenos CD1d/imunologia , Anergia Clonal/imunologia , Feminino , Galactosilceramidas/química , Humanos , Imunoconjugados/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Células Tumorais Cultivadas
19.
Bioorg Med Chem Lett ; 20(12): 3475-8, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20529677

RESUMO

Alpha-glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the alpha-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely alpha-selective and provided gram quantities of amine 11, from which alpha-glucosyl ceramides 4 and 5 were obtained by N-acylation. alpha-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. alpha-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2), induced extremely similar levels of iNKT cell activation and expansion.


Assuntos
Glucosilceramidas/síntese química , Glucosilceramidas/farmacologia , Células T Matadoras Naturais/efeitos dos fármacos , Acilação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicosilação , Humanos , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/citologia , Relação Estrutura-Atividade
20.
Pharmaceutics ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028608

RESUMO

The use of peptide-drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen-dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen-dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing N-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) N-capped with naproxen and linked to a C-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds 4 was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA