Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(9): 362, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608141

RESUMO

Sepsis, an infectious disease affecting millions of people's health worldwide each year, calls for urgent attention to an improvement of analytical devices. Chemiluminescence immunoassay is a typical diagnostic method utilized to assess the risk development of sepsis. However, due to its high-cost, delayed, and complicated procedure, the practical utilization is therefore undoubtedly limited, especially for point-of-care test. Herein, we fabricated for the first time an immunosensor based on dendritic copper nanostructures (CuNSs) combined with 4-aminobenzoic acid (4-AB, the diazonium salt) as antibody linker modified on a screen-printed graphene electrode for the early detection of the sepsis biomarker interleukin-6 (IL-6). The electrode fabrication is made by electrodeposition, thus eliminating the multistep of nanomaterial synthesis and time wasting. The resulting dendritic CuNSs significantly increase the effective surface area (1.2 times) and the sensor's performance. The morphology of this combination was characterized using CV, EIS, SEM, EDX, and FTIR techniques. In the detection process, the appearance of IL-6 suppresses the current response of the redox probe indicator measured by differential pulse voltammetry due to the antibody-antigen complex. The subtraction of signal (ΔI) was interpreted as IL-6 concentration. This sensor exhibited a linear range from 0.05 to 500 pg mL-1 with low detection limit of 0.02 pg mL-1, proving a possibility for early sepsis screening. In addition, the established immunosensor can successfully quantify IL-6 in human serum sample, in which the results agreed well with those achieved using the standard approach, further showing high practical applicability of this developed immunosensor.


Assuntos
Técnicas Biossensoriais , Grafite , Sepse , Humanos , Interleucina-6 , Cobre , Imunoensaio , Sepse/diagnóstico , Eletrodos
2.
Anal Chem ; 93(14): 5931-5938, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33793190

RESUMO

This paper reports the detection of the inflammatory and sepsis-related biomarker, interleukin-6 (IL-6), in human blood plasma using functionalized screen-printed electrodes (SPEs) in conjunction with a thermal detection methodology, termed heat-transfer method (HTM). SPEs are functionalized with antibodies specific for IL-6 through electrodeposition of a diazonium linking group and N'-ethylcarbodiimide hydrochloride (EDC) coupling, which was tracked through the use of cyclic voltammetry and Raman spectroscopy. The functionalized SPEs are mounted inside an additively manufactured flow cell and connected to the HTM device. We demonstrate the ability to detect IL-6 at clinically relevant concentrations in PBS buffer (pH = 7.4) with no significant interference from the similarly sized sepsis-related biomarker procalcitonin (PCT). The limit of detection (3σ) of the system is calculated to correspond to 3.4 ± 0.2 pg mL-1 with a working range spanning the physiologically relevant concentration levels in both healthy individuals and patients with sepsis, indicating the sensitivity of the sensor is suitable for the application. Further experiments helped provide a proof-of-application through the detection of IL-6 in blood plasma with no significant interference observed from PCT or the constituents of the medium. Due to the selectivity, sensitivity, straightforward operation, and low cost of production, this sensor platform has the potential for use as a traffic light sensor for the multidetection of inflammatory biomarkers for the diagnosis of sepsis and other conditions in which the rapid testing of blood biomarkers has vital clinical application.


Assuntos
Interleucina-6/sangue , Sepse , Eletrodos , Humanos , Plasma , Pró-Calcitonina , Sepse/diagnóstico
3.
Curr Top Med Chem ; 24(11): 986-1009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584544

RESUMO

This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.


Assuntos
Técnicas Eletroquímicas , Nanoestruturas , Nanoestruturas/química , Humanos , Técnicas Biossensoriais , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química
4.
Biosens Bioelectron ; 191: 113387, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34146970

RESUMO

This study first reported enzyme-free impedimetric biosensor-based molecularly imprinted polymers for selective and sensitive determination of L-hydroxyproline (L-hyp), a biomarker for the early diagnosis of bone diseases. In recent study, utilizing a single 3-aminophenylboronic acid (3-APBA) to create imprinted surfaces could result in a strong interaction and difficulty in removal of a template molecule. Hence, a mixture of monomer solution containing 3-APBA and o-phenylenediamine (OPD) in the presence of the L-hyp molecule was co-electropolymerized onto the screen-printed electrode using cyclic voltammetry (CV) to eradicate this mentioned limitation. The detection principle of this sensor is relied on alteration of mediator's charge transfer resistance (Rct) that could be obstructed by L-hyp occupied in imprinted surface. The successfully fabricated biosensor was explored by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and confocal scanning microscopy. Furthermore, the effect of polymer composition on the Rct response was systematically investigated. The result exhibited that the mixture of monomers could provide the highest change of Rct due to high selectivity from esterification of 3-APBA and from hydrogen bond of OPD surrounding the template. The sensor showed a significant increase in Rct in the presence of L-hyp, whereas no observable resistance change was detected in the absence thereof. The calibration curve was obtained in the range from 0.4 to 25 µg mL-1 with limits of detection (3SDblank/Slope) and quantification (10SDblank/Slope) of 0.13 and 0.42 µg mL-1, respectively. This biosensor exhibited high selectivity and sensitivity and was successfully applied to determine L-hyp in human serum samples with satisfactory results.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Técnicas Eletroquímicas , Eletrodos , Humanos , Hidroxiprolina , Limite de Detecção , Polímeros Molecularmente Impressos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA