Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell ; 165(1): 220-233, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949187

RESUMO

Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.


Assuntos
Teorema de Bayes , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Células de Renshaw/classificação , Transcriptoma
2.
Cell ; 164(3): 512-25, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824659

RESUMO

The selectivity with which proprioceptive sensory neurons innervate their central and peripheral targets implies that they exhibit distinctions in muscle-type identity. The molecular correlates of proprioceptor identity and its origins remain largely unknown, however. In screens to define muscle-type proprioceptor character, we find all-or-none differences in gene expression for proprioceptors that control antagonistic muscles at a single hindlimb joint. Analysis of three of these genes, cadherin13 (cdh13), semaphorin5a (sema5a), and cartilage-acidic protein-1 (crtac1), reveals expression in proprioceptor subsets that supply muscle groups located at restricted dorsoventral and proximodistal domains of the limb. Genetically altering the dorsoventral character of the limb mesenchyme elicits a change in the profile of proprioceptor cdh13, sema5a, and crtac1 expression. These findings indicate that proprioceptors acquire aspects of their muscle-type identity in response to mesenchymal signals expressed in restricted proximodistal and dorsoventral domains of the developing limb.


Assuntos
Extremidades/embriologia , Mesoderma/metabolismo , Propriocepção , Animais , Caderinas/genética , Proteínas de Ligação ao Cálcio/genética , Embrião de Mamíferos/metabolismo , Extremidades/fisiologia , Camundongos , Músculo Esquelético/inervação , Neurônios/metabolismo , Semaforinas/genética , Transdução de Sinais , Transcriptoma
3.
Cell ; 165(1): 207-219, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26949184

RESUMO

Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.


Assuntos
Extremidades/fisiologia , Movimento , Células de Renshaw/química , Células de Renshaw/citologia , Medula Espinal/citologia , Fatores de Transcrição/análise , Animais , Camundongos , Propriocepção , Células de Renshaw/classificação , Células de Renshaw/fisiologia , Transcriptoma
4.
Cell ; 162(2): 338-350, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186188

RESUMO

Spinal circuits can generate locomotor output in the absence of sensory or descending input, but the principles of locomotor circuit organization remain unclear. We sought insight into these principles by considering the elaboration of locomotor circuits across evolution. The identity of limb-innervating motor neurons was reverted to a state resembling that of motor neurons that direct undulatory swimming in primitive aquatic vertebrates, permitting assessment of the role of motor neuron identity in determining locomotor pattern. Two-photon imaging was coupled with spike inference to measure locomotor firing in hundreds of motor neurons in isolated mouse spinal cords. In wild-type preparations, we observed sequential recruitment of motor neurons innervating flexor muscles controlling progressively more distal joints. Strikingly, after reversion of motor neuron identity, virtually all firing patterns became distinctly flexor like. Our findings show that motor neuron identity directs locomotor circuit wiring and indicate the evolutionary primacy of flexor pattern generation.


Assuntos
Extremidades/fisiologia , Locomoção , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Animais , Evolução Biológica , Extremidades/inervação , Técnicas In Vitro , Camundongos , Medula Espinal/fisiologia
5.
Cell ; 147(3): 653-65, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036571

RESUMO

Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype or, indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serve as a determinant of the pattern of sensory input specificity and thus motor coordination.


Assuntos
Padronização Corporal , Neurônios Motores/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Eletromiografia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Membro Posterior/inervação , Camundongos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células Receptoras Sensoriais/metabolismo
6.
Cell ; 147(3): 641-52, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036570

RESUMO

Neurons typically settle at positions that match the location of their synaptic targets, creating topographic maps. In the spinal cord, the organization of motor neurons into discrete clusters is linked to the location of their muscle targets, establishing a topographic map of punctate design. To define the significance of motor pool organization for neuromuscular map formation, we assessed the role of cadherin-catenin signaling in motor neuron positioning and limb muscle innervation. We find that joint inactivation of ß- and γ-catenin scrambles motor neuron settling position in the spinal cord but fails to erode the predictive link between motor neuron transcriptional identity and muscle target. Inactivation of N-cadherin perturbs pool positioning in similar ways, albeit with reduced penetrance. These findings reveal that cadherin-catenin signaling directs motor pool patterning and imposes topographic order on an underlying identity-based neural map.


Assuntos
Caderinas/metabolismo , Neurônios Motores/metabolismo , Transdução de Sinais , Medula Espinal/embriologia , beta Catenina/metabolismo , gama Catenina/metabolismo , Animais , Evolução Biológica , Padronização Corporal , Embrião de Mamíferos/metabolismo , Camundongos , Mutação , Medula Espinal/citologia , Medula Espinal/metabolismo , Via de Sinalização Wnt
7.
Cell ; 139(1): 161-74, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19804761

RESUMO

GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.


Assuntos
Interneurônios/fisiologia , Medula Espinal/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glutamato Descarboxilase , Camundongos , Neurônios Motores/fisiologia , Terminações Pré-Sinápticas , Propriocepção , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia
8.
Cell ; 134(2): 304-16, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662545

RESUMO

The precision with which motor neurons innervate target muscles depends on a regulatory network of Hox transcription factors that translates neuronal identity into patterns of connectivity. We show that a single transcription factor, FoxP1, coordinates motor neuron subtype identity and connectivity through its activity as a Hox accessory factor. FoxP1 is expressed in Hox-sensitive motor columns and acts as a dose-dependent determinant of columnar fate. Inactivation of Foxp1 abolishes the output of the motor neuron Hox network, reverting the spinal motor system to an ancestral state. The loss of FoxP1 also changes the pattern of motor neuron connectivity, and in the limb motor axons appear to select their trajectories and muscle targets at random. Our findings show that FoxP1 is a crucial determinant of motor neuron diversification and connectivity, and clarify how this Hox regulatory network controls the formation of a topographic neural map.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Proteínas Repressoras/metabolismo , Medula Espinal/metabolismo , Animais , Embrião de Galinha , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Proteínas Repressoras/genética , Medula Espinal/citologia
10.
J Neurosci ; 39(22): 4252-4267, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926747

RESUMO

Proprioceptive feedback from Group Ia/II muscle spindle afferents and Group Ib Golgi tendon afferents is critical for the normal execution of most motor tasks, yet how these distinct proprioceptor subtypes emerge during development remains poorly understood. Using molecular genetic approaches in mice of either sex, we identified 24 transcripts that have not previously been associated with a proprioceptor identity. Combinatorial expression analyses of these markers reveal at least three molecularly distinct proprioceptor subtypes. In addition, we find that 12 of these transcripts are expressed well after proprioceptors innervate their respective sensory receptors, and expression of three of these markers, including the heart development molecule Heg1, is significantly reduced in mice that lack muscle spindles. These data reveal Heg1 as a putative marker for proprioceptive muscle spindle afferents. Moreover, they suggest that the phenotypic specialization of functionally distinct proprioceptor subtypes depends, in part, on extrinsic sensory receptor organ-derived signals.SIGNIFICANCE STATEMENT Sensory feedback from muscle spindle (MS) and Golgi tendon organ (GTO) sensory end organs is critical for normal motor control, but how distinct MS and GTO afferent sensory neurons emerge during development remains poorly understood. Using (bulk) transcriptome analysis of genetically identified proprioceptors, this work reveals molecular markers for distinct proprioceptor subsets, including some that appear selectively expressed in MS afferents. Detailed analysis of the expression of these transcripts provides evidence that MS/GTO afferent subtype phenotypes may, at least in part, emerge through extrinsic, sensory end organ-derived signals.


Assuntos
Retroalimentação Sensorial/fisiologia , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Propriocepção/fisiologia , Animais , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Fusos Musculares/inervação , Fenótipo
11.
Nature ; 508(7496): 357-63, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24487617

RESUMO

The precision of skilled forelimb movement has long been presumed to rely on rapid feedback corrections triggered by internally directed copies of outgoing motor commands, but the functional relevance of inferred internal copy circuits has remained unclear. One class of spinal interneurons implicated in the control of mammalian forelimb movement, cervical propriospinal neurons (PNs), has the potential to convey an internal copy of premotor signals through dual innervation of forelimb-innervating motor neurons and precerebellar neurons of the lateral reticular nucleus. Here we examine whether the PN internal copy pathway functions in the control of goal-directed reaching. In mice, PNs include a genetically accessible subpopulation of cervical V2a interneurons, and their targeted ablation perturbs reaching while leaving intact other elements of forelimb movement. Moreover, optogenetic activation of the PN internal copy branch recruits a rapid cerebellar feedback loop that modulates forelimb motor neuron activity and severely disrupts reaching kinematics. Our findings implicate V2a PNs as the focus of an internal copy pathway assigned to the rapid updating of motor output during reaching behaviour.


Assuntos
Membro Anterior/inervação , Membro Anterior/fisiologia , Neurônios Motores/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Vias Neurais , Medula Espinal/citologia , Animais , Cerebelo/fisiologia , Retroalimentação Fisiológica , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Optogenética , Desempenho Psicomotor/fisiologia
12.
Nature ; 509(7498): 43-8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784215

RESUMO

The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo-axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory-motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behaviour. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2-expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modelling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hardwired gain control system crucial for the smooth execution of movement.


Assuntos
Retroalimentação Sensorial/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/fisiologia , Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Vias Eferentes/fisiologia , Feminino , Membro Anterior/fisiologia , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Modelos Neurológicos , Neurotransmissores/metabolismo
13.
J Neurosci ; 38(44): 9539-9550, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30242051

RESUMO

We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up ∼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.


Assuntos
Aprendizagem por Associação/fisiologia , Núcleos Cerebelares/metabolismo , Núcleo Olivar/metabolismo , Fatores de Transcrição SOXB2/deficiência , Animais , Células Cultivadas , Núcleos Cerebelares/química , Cerebelo/química , Cerebelo/metabolismo , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/metabolismo , Núcleo Olivar/química , Fatores de Transcrição SOXB2/genética
14.
J Neurophysiol ; 120(5): 2484-2497, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133381

RESUMO

Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.


Assuntos
Retroalimentação Sensorial , Fusos Musculares/fisiologia , Caminhada/fisiologia , Animais , Feminino , Masculino , Camundongos , Contração Muscular , Fusos Musculares/inervação , Propriocepção
15.
Proc Natl Acad Sci U S A ; 111(47): 16877-82, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25389309

RESUMO

Mammalian locomotor programs are thought to be directed by the actions of spinal interneuron circuits collectively referred to as "central pattern generators." The contribution of proprioceptive sensory feedback to the coordination of locomotor activity remains less clear. We have analyzed changes in mouse locomotor pattern under conditions in which proprioceptive feedback is attenuated genetically and biomechanically. We find that locomotor pattern degrades upon elimination of proprioceptive feedback from muscle spindles and Golgi tendon organs. The degradation of locomotor pattern is manifest as the loss of interjoint coordination and alternation of flexor and extensor muscles. Group Ia/II sensory feedback from muscle spindles has a predominant influence in patterning the activity of flexor muscles, whereas the redundant activities of group Ia/II and group Ib afferents appear to determine the pattern of extensor muscle firing. These findings establish a role for proprioceptive feedback in the control of fundamental aspects of mammalian locomotor behavior.


Assuntos
Retroalimentação , Locomoção , Propriocepção , Animais , Fenômenos Biomecânicos , Camundongos
16.
J Neurosci ; 35(7): 3073-84, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698744

RESUMO

Mechanoreception is an essential feature of many sensory modalities. Nevertheless, the mechanisms that govern the conversion of a mechanical force to distinct patterns of action potentials remain poorly understood. Proprioceptive mechanoreceptors reside in skeletal muscle and inform the nervous system of the position of body and limbs in space. We show here that Whirlin/Deafness autosomal recessive 31 (DFNB31), a PDZ-scaffold protein involved in vestibular and auditory hair cell transduction, is also expressed by proprioceptive sensory neurons (pSNs) in dorsal root ganglia in mice. Whirlin localizes to the peripheral sensory endings of pSNs and facilitates pSN afferent firing in response to muscle stretch. The requirement of Whirlin in both proprioceptors and hair cells suggests that accessory mechanosensory signaling molecules define common features of mechanoreceptive processing across sensory systems.


Assuntos
Proteínas de Membrana/metabolismo , Fusos Musculares/fisiologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Gânglios Espinais/citologia , Perfilação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Análise de Sequência com Séries de Oligonucleotídeos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Aglutininas do Germe de Trigo/genética , Aglutininas do Germe de Trigo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Nature ; 459(7248): 842-6, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19421194

RESUMO

Spinal reflexes are mediated by synaptic connections between sensory afferents and motor neurons. The organization of these circuits shows several levels of specificity. Only certain classes of proprioceptive sensory neurons make direct, monosynaptic connections with motor neurons. Those that do are bound by rules of motor pool specificity: they form strong connections with motor neurons supplying the same muscle, but avoid motor pools supplying antagonistic muscles. This pattern of connectivity is initially accurate and is maintained in the absence of activity, implying that wiring specificity relies on the matching of recognition molecules on the surface of sensory and motor neurons. However, determinants of fine synaptic specificity here, as in most regions of the central nervous system, have yet to be defined. To address the origins of synaptic specificity in these reflex circuits we have used molecular genetic methods to manipulate recognition proteins expressed by subsets of sensory and motor neurons. We show here that a recognition system involving expression of the class 3 semaphorin Sema3e by selected motor neuron pools, and its high-affinity receptor plexin D1 (Plxnd1) by proprioceptive sensory neurons, is a critical determinant of synaptic specificity in sensory-motor circuits in mice. Changing the profile of Sema3e-Plxnd1 signalling in sensory or motor neurons results in functional and anatomical rewiring of monosynaptic connections, but does not alter motor pool specificity. Our findings indicate that patterns of monosynaptic connectivity in this prototypic central nervous system circuit are constructed through a recognition program based on repellent signalling.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Motores/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Citoesqueleto , Glicoproteínas/deficiência , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Modelos Neurológicos , Músculo Esquelético/citologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso , Vias Neurais/fisiologia , Propriocepção/fisiologia , Reflexo Monosináptico/fisiologia , Semaforinas , Pele/citologia , Pele/inervação
18.
Development ; 137(23): 4051-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062862

RESUMO

The deployment of morphogen gradients is a core strategy to establish cell diversity in developing tissues, but little is known about how small differences in the concentration of extracellular signals are translated into robust patterning output in responding cells. We have examined the activity of homeodomain proteins, which are presumed to operate downstream of graded Shh signaling in neural patterning, and describe a feedback circuit between the Shh pathway and homeodomain transcription factors that establishes non-graded regulation of Shh signaling activity. Nkx2 proteins intrinsically strengthen Shh responses in a feed-forward amplification and are required for ventral floor plate and p3 progenitor fates. Conversely, Pax6 has an opposing function to antagonize Shh signaling, which provides intrinsic resistance to Shh responses and is important to constrain the inductive capacity of the Shh gradient over time. Our data further suggest that patterning of floor plate cells and p3 progenitors is gated by a temporal switch in neuronal potential, rather than by different Shh concentrations. These data establish that dynamic, non-graded changes in responding cells are essential for Shh morphogen interpretation, and provide a rationale to explain mechanistically the phenomenon of cellular memory of morphogen exposure.


Assuntos
Padronização Corporal , Retroalimentação Fisiológica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Mutantes Neurológicos , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios/citologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
19.
Neuron ; 57(2): 217-31, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18215620

RESUMO

The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Medula Espinal/citologia , Fatores Etários , Animais , Embrião de Galinha , Embrião de Mamíferos , Proteínas de Fluorescência Verde/metabolismo , Membro Posterior/embriologia , Membro Posterior/inervação , Proteínas de Homeodomínio/genética , Peroxidase do Rábano Silvestre/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Denervação Muscular/métodos , Músculo Esquelético/embriologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia
20.
Proc Natl Acad Sci U S A ; 106(32): 13588-93, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651609

RESUMO

Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3(on)/NeuN(off) presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools.


Assuntos
Neurônios Motores/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Neurônios Motores/enzimologia , Neurônios Motores/patologia , Fusos Musculares/metabolismo , Fusos Musculares/patologia , Neuraminidase/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Fenótipo , Propriocepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA