Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Dermatol ; 27(5): 476-483, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29356091

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease of increasing prevalence, especially in industrialized countries. Roughly 25% of the children and 1%-3% of adults are affected. Although significant progress has been made in the understanding of the pathogenesis of AD, many aspects remain poorly understood. Moreover, there is a pressing need for improved therapeutic options. Studies to elucidate the pathophysiological pathways of AD and to identify novel therapeutic targets over the last few decades have been conducted almost exclusively in animal models. However, in vitro approaches such as 3D skin disease models have recently emerged due to an increasing awareness of distinct interspecies-related differences that hamper the effective translation of results from animal models to humans. In addition, there is growing political and social pressure to develop alternatives to animal models according to the 3Rs principle (reduction, refinement and replacement of animal models).


Assuntos
Alternativas aos Testes com Animais , Dermatite Atópica , Técnicas In Vitro , Animais , Modelos Animais de Doenças
2.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302667

RESUMO

Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts. Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.


Assuntos
Células Epidérmicas/metabolismo , Fibroblastos/metabolismo , Homeostase/fisiologia , Queratinócitos/metabolismo , Pele/metabolismo , Diferenciação Celular , Células Epidérmicas/patologia , Epiderme/metabolismo , Homeostase/genética , Humanos , Queratinócitos/patologia , Permeabilidade , Pele/patologia , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA