Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 73(2): 323-342, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38190300

RESUMO

The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.


Assuntos
Fluxo Gênico , Lagartos , Animais , Lagartos/genética , Lagartos/classificação , Clima Desértico , Filogenia , México , Genômica
2.
Mol Ecol ; 32(22): 6000-6017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861454

RESUMO

Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles, Anolis pulchellus and A. krugi in Puerto Rico. Hybrids exhibit A. pulchellus phenotypes but possess A. krugi mitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pure A. pulchellus across a large area in western Puerto Rico. Combining genome-wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated by pulchellus-derived alleles and show only 10%-20% A. krugi ancestry. The majority of A. krugi loci in hybrids exhibit a signal of non-random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non-random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear-encoded genes in hybrids.


Assuntos
Genoma , Mitocôndrias , Humanos , Mitocôndrias/genética , Hibridização Genética , DNA Mitocondrial/genética , Porto Rico
3.
Mol Ecol ; 30(18): 4481-4496, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245067

RESUMO

Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.


Assuntos
Variação Genética , Lagartos , Animais , Clima , Demografia , Genética Populacional , Genômica , Lagartos/genética
4.
Mol Ecol ; 28(10): 2610-2624, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843297

RESUMO

Around the world, many species are confined to "Sky Islands," with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low-elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly "pushed off the top" by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5-0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.


Assuntos
Mudança Climática , DNA Mitocondrial/genética , Lagartos/genética , Filogeografia , Animais , Arizona , Ecossistema , Variação Genética/genética , Ilhas , Filogenia
5.
Mol Ecol ; 27(12): 2754-2769, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29779234

RESUMO

Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large-scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (n = 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61-76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.


Assuntos
Lagartos/genética , Serpentes/genética , Animais , Evolução Biológica , Clima , Ecossistema , Especiação Genética , Geografia/métodos , Filogenia , Simpatria/genética
6.
Mol Ecol ; 27(23): 4744-4757, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30269397

RESUMO

Invasive species provide powerful in situ experimental systems for studying evolution in response to selective pressures in novel habitats. While research has shown that phenotypic evolution can occur rapidly in nature, few examples exist of genomewide adaptation on short "ecological" timescales. Burmese pythons (Python molurus bivittatus) have become a successful and impactful invasive species in Florida over the last 30 years despite major freeze events that caused high python mortality. We sampled Florida Burmese pythons before and after a major freeze event in 2010 and found evidence for directional selection in genomic regions enriched for genes associated with thermosensation, behaviour and physiology. Several of these genes are linked to regenerative organ growth, an adaptive response that modulates organ size and function with feeding and fasting in pythons. Independent histological and functional genomic data sets provide additional layers of support for a contemporary shift in invasive Burmese python physiology. In the Florida population, a shift towards maintaining an active digestive system may be driven by the fitness benefits of maintaining higher metabolic rates and body temperature during freeze events. Our results suggest that a synergistic interaction between ecological and climatic selection pressures has driven adaptation in Florida Burmese pythons, demonstrating the often-overlooked potential of rapid adaptation to influence the success of invasive species.


Assuntos
Adaptação Fisiológica , Boidae/genética , Clima , Espécies Introduzidas , Animais , Boidae/fisiologia , Evolução Molecular , Florida , Genoma , Seleção Genética
7.
Mol Phylogenet Evol ; 127: 669-681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902574

RESUMO

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.


Assuntos
Crotalus/genética , Fluxo Gênico , Variação Genética , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , Crotalus/classificação , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , México , Filogenia , Filogeografia , Fatores de Tempo , Estados Unidos
8.
Am Nat ; 189(3): 201-212, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28221832

RESUMO

Animal phyla vary dramatically in species richness (from one species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile marine taxa lacking heads, eyes, limbs, and complex organs (e.g., sponges), parasitic worms (e.g., nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and richness of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and richness of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ∼74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, nonmarine habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (∼67%). Diversification rates then largely explain richness patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g., head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and richness across >80% of all extant, described species.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Animais , Ecologia , Reprodução
9.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881748

RESUMO

Climate change may soon threaten much of global biodiversity. A critical question is: can species undergo niche shifts of sufficient speed and magnitude to persist within their current geographic ranges? Here, we analyse niche shifts among populations within 56 plant and animal species using time-calibrated trees from phylogeographic studies. Across 266 phylogeographic groups analysed, rates of niche change were much slower than rates of projected climate change (mean difference > 200 000-fold for temperature variables). Furthermore, the absolute niche divergence among populations was typically lower than the magnitude of projected climate change over the next approximately 55 years for relevant variables, suggesting the amount of change needed to persist may often be too great, even if these niche shifts were instantaneous. Rates were broadly similar between plants and animals, but especially rapid in some arthropods, birds and mammals. Rates for temperature variables were lower at lower latitudes, further suggesting that tropical species may be especially vulnerable to climate change.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Animais , Aves/classificação , Mamíferos/classificação , Modelos Biológicos , Filogeografia , Plantas/classificação , Temperatura
10.
Mol Phylogenet Evol ; 102: 104-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27241629

RESUMO

Boa is a Neotropical genus of snakes historically recognized as monotypic despite its expansive distribution. The distinct morphological traits and color patterns exhibited by these snakes, together with the wide diversity of ecosystems they inhabit, collectively suggest that the genus may represent multiple species. Morphological variation within Boa also includes instances of dwarfism observed in multiple offshore island populations. Despite this substantial diversity, the systematics of the genus Boa has received little attention until very recently. In this study we examined the genetic structure and phylogenetic relationships of Boa populations using mitochondrial sequences and genome-wide SNP data obtained from RADseq. We analyzed these data at multiple geographic scales using a combination of phylogenetic inference (including coalescent-based species delimitation) and population genetic analyses. We identified extensive population structure across the range of the genus Boa and multiple lines of evidence for three widely-distributed clades roughly corresponding with the three primary land masses of the Western Hemisphere. We also find both mitochondrial and nuclear support for independent origins and parallel evolution of dwarfism on offshore island clusters in Belize and Cayos Cochinos Menor, Honduras.


Assuntos
Boidae/genética , Genética Populacional , Animais , Teorema de Bayes , Evolução Biológica , Boidae/classificação , Boidae/fisiologia , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Nanismo/patologia , Nanismo/veterinária , Frequência do Gene , Variação Genética , Haplótipos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
Ecography ; 39(5): 437-448, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27231410

RESUMO

During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.

12.
Mol Ecol ; 24(1): 83-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25413968

RESUMO

How does range expansion affect genetic diversity in species with different ecologies, and do different types of genetic markers lead to different conclusions? We addressed these questions by assessing the genetic consequences of postglacial range expansion using mitochondrial DNA (mtDNA) and nuclear restriction site-associated DNA (RAD) sequencing in two congeneric and codistributed rodents with different ecological characteristics: the desert kangaroo rat (Dipodomys deserti), a sand specialist, and the Merriam's kangaroo rat (Dipodomys merriami), a substrate generalist. For each species, we compared genetic variation between populations that retained stable distributions throughout glacial periods and those inferred to have expanded since the last glacial maximum. Our results suggest that expanded populations of both species experienced a loss of private mtDNA haplotypes and differentiation among populations, as well as a loss of nuclear single-nucleotide polymorphism (SNP) private alleles and polymorphic loci. However, only D. deserti experienced a loss of nucleotide diversity (both mtDNA and nuclear) and nuclear heterozygosity. For all indices of diversity and differentiation that showed reduced values in the expanded areas, D. deserti populations experienced a greater degree of loss than did D. merriami populations. Additionally, patterns of loss in genetic diversity in expanded populations were substantially less extreme (by two orders of magnitude in some cases) for nuclear SNPs in both species compared to that observed for mitochondrial data. Our results demonstrate that ecological characteristics may play a role in determining genetic variation associated with range expansions, yet mtDNA diversity loss is not necessarily accompanied by a matched magnitude of loss in nuclear diversity.


Assuntos
Dipodomys/genética , Meio Ambiente , Genética Populacional , Animais , California , Clima , DNA Mitocondrial/genética , Dipodomys/classificação , Loci Gênicos , Haplótipos , México , Modelos Biológicos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 88: 144-53, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837733

RESUMO

Habitat fragmentation reduces the extent and connectivity of suitable habitats, and can lead to changes in population genetic structure. Limited gene flow among isolated demes can result in increased genetic divergence among populations, and decreased genetic diversity within demes. We assessed patterns of genetic variation in the Caribbean boa Chilabothrus monensis (Epicrates monensis) using two mitochondrial and seven nuclear markers, and relying on the largest number of specimens of these snakes examined to date. Two disjunct subspecies of C. monensis are recognized: the threatened C. m. monensis, endemic to Mona Island, and the rare and endangered C. m. granti, which occurs on various islands of the Puerto Rican Bank. Mitochondrial and nuclear markers revealed unambiguous genetic differences between the taxa, and coalescent species delimitation methods indicated that these snakes likely are different evolutionary lineages, which we recognize at the species level, C. monensis and C. granti. All examined loci in C. monensis (sensu stricto) are monomorphic, which may indicate a recent bottleneck event. Each population of C. granti exclusively contains private mtDNA haplotypes, but five of the seven nuclear genes assayed are monomorphic, and nucleotide diversity is low in the two remaining markers. The faster pace of evolution of mtDNA possibly reflects the present-day isolation of populations of C. granti, whereas the slower substitution rate of nuDNA may instead mirror the relatively recent episodes of connectivity among the populations facilitated by the lower sea level during the Pleistocene. The small degree of overall genetic variation in C. granti suggests that demes of this snake could be managed as a single unit, a practice that would significantly increase their effective population size.


Assuntos
Boidae/genética , Variação Genética , Animais , Evolução Biológica , Boidae/classificação , Região do Caribe , Conservação dos Recursos Naturais , DNA Mitocondrial/química , Espécies em Perigo de Extinção , Fluxo Gênico , Deriva Genética , Ilhas , Filogenia , Filogeografia
14.
Mol Phylogenet Evol ; 83: 213-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25534232

RESUMO

We used mitochondrial DNA sequence data from 151 individuals to estimate population genetic structure across the range of the Western Diamondback Rattlesnake (Crotalus atrox), a widely distributed North American pit viper. We also tested hypotheses of population structure using double-digest restriction site associated DNA (ddRADseq) data, incorporating thousands of nuclear genome-wide SNPs from 42 individuals. We found strong mitochondrial support for a deep divergence between eastern and western C. atrox populations, and subsequent intermixing of these populations in the Inter-Pecos region of the United States and Mexico. Our nuclear RADseq data also identify these two distinct lineages of C. atrox, and provide evidence for nuclear admixture of eastern and western alleles across a broad geographic region. We identified contrasting patterns of mitochondrial and nuclear genetic variation across this genetic fusion zone that indicate partially restricted patterns of gene flow, which may be due to either pre- or post-zygotic isolating mechanisms. The failure of these two lineages to maintain complete genetic isolation, and evidence for partially-restricted gene flow, imply that these lineages were in the early stages of speciation prior to secondary contact.


Assuntos
Crotalus/classificação , Fluxo Gênico , Especiação Genética , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Crotalus/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , México , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Isolamento Reprodutivo , Análise de Sequência de DNA , Estados Unidos
15.
Ecol Evol ; 12(11): e9537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447598

RESUMO

In numerous clades, divergent sister species have largely non-overlapping geographic ranges. This pattern presumably arises because species diverged in allopatry or parapatry, prior to a subsequent contact. Here, we provide population-genomic evidence for the opposite scenario: previously sympatric ecotypes that have spatially separated into divergent monomorphic populations over large geographic scales (reverse sympatric scenario). We analyzed a North American salamander (Plethodon cinereus) with two color morphs that are broadly sympatric: striped (redback) and unstriped (leadback). Sympatric morphs can show considerable divergence in other traits, and many Plethodon species are fixed for a single morph. Long Island (New York) is unusual in having many pure redback and leadback populations that are spatially separated, with pure redback populations in the west and pure leadbacks in the east. Previous work showed that these pure-morph populations were genetically, morphologically, and ecologically divergent. Here, we performed a coalescent-based analysis of new data from 88,696 single-nucleotide polymorphisms to address the origins of these populations. This analysis strongly supports the monophyly of Long Island populations and their subsequent divergence into pure redback and pure leadback populations. Taken together, these results suggest that the formerly sympatric mainland morphs separated into parapatric populations on Long Island, reversing the conventional speciation scenario.

16.
Gigascience ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134927

RESUMO

BACKGROUND: The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FINDINGS: The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. CONCLUSIONS: Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.


Assuntos
Lagartos , Animais , Genoma , Cariótipo , Lagartos/genética , Serpentes/genética , Sintenia
17.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849831

RESUMO

The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype-environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find that divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept.


Assuntos
Lagartos , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Demografia , Variação Genética , Lagartos/genética , Filogenia , Filogeografia , Estados Unidos
18.
Mol Ecol ; 19(9): 1860-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20374489

RESUMO

Two factors that can lead to geographic structuring in conspecific populations are barriers to dispersal and climatic stability. Populations that occur in different physiographic regions may be restricted to those areas by physical and/or ecological barriers, which may facilitate the formation of phylogeographic clades. Long-term climatic stability can also promote genetic diversification, because new clades are more likely to evolve in areas that experience lesser climatic shifts. We conducted a phylogeographic study of the Puerto Rican lizard Anolis krugi to assess whether populations of this anole show genetic discontinuities across the species' range, and if they do, whether these breaks coincide with the boundaries of the five physiographic regions of Puerto Rico. We also assessed whether interpopulation genetic distances in A. krugi are positively correlated with relative climatic stability in the island. Anolis krugi exhibits genetic structuring, but the phylogroups do not correspond to the physiographic regions of Puerto Rico. We used climatic reconstructions of two environmental extremes of the Quaternary period, the present conditions and those during the last glacial maximum (LGM), to quantify the degree of climatic stability between sampling locations. We documented positive correlations between genetic distances and relative climatic stability, although these associations were not significant when corrected for autocorrelation. Principal component analyses indicated the existence of climatic niche differences between some phylogeographic clades of A. krugi. The approach that we employed to assess the relationship between climatic stability and the genetic architecture of A. krugi can also be used to investigate the impact of factors such as the spatial distribution of food sources, parasites, predators or competitors on the genetic landscape of a species.


Assuntos
Clima , Genética Populacional , Lagartos/genética , Filogenia , Animais , Ecossistema , Evolução Molecular , Variação Genética , Geografia , Haplótipos , Funções Verossimilhança , Lagartos/classificação , Modelos Genéticos , Modelos Teóricos , Porto Rico , Análise de Sequência de DNA , Especificidade da Espécie
19.
Trends Ecol Evol ; 32(3): 211-226, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28196688

RESUMO

Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Clima , Ecologia , Filogenia , Filogeografia
20.
Ecol Evol ; 7(11): 3951-3966, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28616190

RESUMO

Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater-than-expected overlap between genes linked to lineage-specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome-scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA