Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Dev Biol ; 14: 32, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25063185

RESUMO

BACKGROUND: To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. RESULTS: Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. CONCLUSIONS: We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.


Assuntos
Ambystoma/metabolismo , Membro Posterior/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Ambystoma/crescimento & desenvolvimento , Animais , Regeneração Óssea/fisiologia , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica no Desenvolvimento , Espectrometria de Massas , Proteômica , Transdução de Sinais , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento
2.
BMC Bioinformatics ; 12: 80, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21418574

RESUMO

BACKGROUND: Studies on amphibian limb regeneration began in the early 1700's but we still do not completely understand the cellular and molecular events of this unique process. Understanding a complex biological process such as limb regeneration is more complicated than the knowledge of the individual genes or proteins involved. Here we followed a systems biology approach in an effort to construct the networks and pathways of protein interactions involved in formation of the accumulation blastema in regenerating axolotl limbs. RESULTS: We used the human orthologs of proteins previously identified by our research team as bait to identify the transcription factor (TF) pathways and networks that regulate blastema formation in amputated axolotl limbs. The five most connected factors, c-Myc, SP1, HNF4A, ESR1 and p53 regulate ~50% of the proteins in our data. Among these, c-Myc and SP1 regulate 36.2% of the proteins. c-Myc was the most highly connected TF (71 targets). Network analysis showed that TGF-ß1 and fibronectin (FN) lead to the activation of these TFs. We found that other TFs known to be involved in epigenetic reprogramming, such as Klf4, Oct4, and Lin28 are also connected to c-Myc and SP1. CONCLUSIONS: Our study provides a systems biology approach to how different molecular entities inter-connect with each other during the formation of an accumulation blastema in regenerating axolotl limbs. This approach provides an in silico methodology to identify proteins that are not detected by experimental methods such as proteomics but are potentially important to blastema formation. We found that the TFs, c-Myc and SP1 and their target genes could potentially play a central role in limb regeneration. Systems biology has the potential to map out numerous other pathways that are crucial to blastema formation in regeneration-competent limbs, to compare these to the pathways that characterize regeneration-deficient limbs and finally, to identify stem cell markers in regeneration.


Assuntos
Extremidades/fisiologia , Proteômica , Regeneração/genética , Fatores de Transcrição/genética , Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiologia , Animais , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fator 4 Semelhante a Kruppel , Fator de Crescimento Transformador beta1/genética
3.
BMC Biol ; 7: 83, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19948009

RESUMO

BACKGROUND: Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. RESULTS: We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. CONCLUSION: Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the general value of quantitative proteomic analysis in understanding the regeneration of complex structures.


Assuntos
Ambystoma/fisiologia , Extremidades/fisiologia , Proteômica , Regeneração/fisiologia , Amputação Cirúrgica , Animais , Sinalização do Cálcio/genética , Cromatografia Líquida de Alta Pressão , Matriz Extracelular/metabolismo , Extremidades/cirurgia , Inositol 1,4,5-Trifosfato/metabolismo , Mapeamento de Peptídeos , Espectrometria de Massas em Tandem , Cicatrização
4.
Drug Discov Today ; 24(6): 1232-1236, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30935985

RESUMO

Genome-wide association studies (GWAS) have made considerable progress and there is emerging evidence that genetics-based targets can lead to 28% more launched drugs. We analyzed 1589 GWAS across 1456 pathways to translate these often imprecise genetic loci into therapeutic hypotheses for 182 diseases. These pathway-based genetic targets were validated by testing whether current drug targets were enriched in the pathway space for the same indication. Remarkably, 30% of diseases had significantly more targets in these pathways than expected by chance; the comparable number for GWAS alone (without pathway analysis) was zero. This study shows that a systematic global pathway analysis can translate genetic findings into therapeutic hypotheses for both new drug discovery and repositioning opportunities for current drugs.


Assuntos
Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Loci Gênicos/genética , Preparações Farmacêuticas/química , Estudo de Associação Genômica Ampla/métodos , Humanos
5.
BMC Syst Biol ; 13(1): 8, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642337

RESUMO

BACKGROUND: Psoriasis is a complex multi-factorial disease, involving both genetic susceptibilities and environmental triggers. Genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS) have been carried out to identify genetic and epigenetic variants that are associated with psoriasis. However, these loci cannot fully explain the disease pathogenesis. METHODS: To achieve a comprehensive mechanistic understanding of psoriasis, we conducted a systems biology study, integrating multi-omics datasets including GWAS, EWAS, tissue-specific transcriptome, expression quantitative trait loci (eQTLs), gene networks, and biological pathways to identify the key genes, processes, and networks that are genetically and epigenetically associated with psoriasis risk. RESULTS: This integrative genomics study identified both well-characterized (e.g., the IL17 pathway in both GWAS and EWAS) and novel biological processes (e.g., the branched chain amino acid catabolism process in GWAS and the platelet and coagulation pathway in EWAS) involved in psoriasis. Finally, by utilizing tissue-specific gene regulatory networks, we unraveled the interactions among the psoriasis-associated genes and pathways in a tissue-specific manner and detected potential key regulatory genes in the psoriasis networks. CONCLUSIONS: The integration and convergence of multi-omics signals provide deeper and comprehensive insights into the biological mechanisms associated with psoriasis susceptibility.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Psoríase/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes , Humanos , Especificidade de Órgãos , Locos de Características Quantitativas/genética
6.
Front Immunol ; 10: 678, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024538

RESUMO

Group 2 innate lymphoid cells (ILC2) increase in frequency in eczema and allergic asthma patients, and thus represent a new therapeutic target cell for type-2 immune-mediated disease. The bromodomain and extra-terminal (BET) protein family of epigenetic regulators are known to support the expression of cell cycle and pro-inflammatory genes during type-1 inflammation, but have not been evaluated in type-2 immune responses. We isolated human ILC2 and examined the capacity of the BET protein inhibitor, iBET151, to modulate human ILC2 activation following IL-33 stimulation. iBET151 profoundly blocked expression of genes critical for type-2 immunity, including type-2 cytokines, cell surface receptors and transcriptional regulators of ILC2 differentiation and activation. Furthermore, in vivo administration of iBET151 during experimental mouse models of allergic lung inflammation potently inhibited lung inflammation and airways resistance in response to cytokine or allergen exposure. Thus, iBET151 effectively prevents human ILC2 activation and dampens type-2 immune responses.


Assuntos
Anti-Inflamatórios/farmacologia , Hipersensibilidade/tratamento farmacológico , Pneumonia/tratamento farmacológico , Proteínas/antagonistas & inibidores , Alérgenos/imunologia , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Pneumonia/imunologia , Pneumonia/metabolismo
7.
PLoS One ; 10(6): e0130819, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098852

RESUMO

We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process.


Assuntos
Ambystoma mexicanum/fisiologia , Osso e Ossos/fisiologia , Extremidades/fisiologia , Fíbula/fisiologia , Osteogênese/fisiologia , Regeneração/fisiologia , Ambystoma mexicanum/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Cartilagem/fisiologia , Fíbula/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Intestino Delgado/metabolismo , Intestino Delgado/fisiologia , Suínos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA