Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430478

RESUMO

Nanotechnology-based development of drug delivery systems is an attractive area of research in formulation driven R&D laboratories that makes administration of new and complex drugs feasible. It plays a significant role in the design of novel dosage forms by attributing target specific drug delivery, controlled drug release, improved, patient friendly drug regimen and lower side effects. Polysaccharides, especially chitosan, occupy an important place and are widely used in nano drug delivery systems owing to their biocompatibility and biodegradability. This review focuses on chitosan nanoparticles and envisages to provide an insight into the chemistry, properties, drug release mechanisms, preparation techniques and the vast evolving landscape of diverse applications across disease categories leading to development of better therapeutics and superior clinical outcomes. It summarizes recent advancement in the development and utility of functionalized chitosan in anticancer therapeutics, cancer immunotherapy, theranostics and multistage delivery systems.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanomedicina Teranóstica , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacocinética , Fenômenos Químicos , Portadores de Fármacos/síntese química , Nanomedicina Teranóstica/métodos
2.
Eur J Pharm Biopharm ; : 114500, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303949

RESUMO

Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs) and phagocytic cell model as macrophages. Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized both types of EV-labeled particles to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA