Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676115

RESUMO

In traditional tunnel monitoring, the characteristic points of an object within a tunnel are measured to obtain information about the object. Considering the limitations of the traditional method in measuring the complex surface structure of tunnels, such as limited monitoring points, a long measurement period, and low precision, this study introduces an approach that uses three-dimensional (3D) laser scanning for monitoring tunnel cross-section deformation. Using this approach, the soft surrounding rock of a high-altitude ultralong tunnel was taken as the monitoring object. The test tunnel was first scanned using a 3D laser scanner, and the collected data were processed. The internal structural data of the tunnel were subsequently compared with its actual contour lines and the data of its primary branch and secondary lining on different dates. The results indicate that the arch roof of the tunnel tended to be stable within a certain time range when the positions of the primary branch and secondary lining were at different measuring points with different pile numbers. The deformation of the pile number on the left and right sides did not generally exceed 0.02 m, except at a few measuring points. A comparison between the actual cross section of the initial branch and that of the designed section showed that the actual elevation of the arch of the initial branch of the tunnel was greater than its designed elevation by no more than 0.3 m. Hence, through this study, a convenient and practical method is presented for monitoring deformation in complex curved tunnel structures.

2.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960528

RESUMO

The early health warning of a cable-stayed bridge is of great significance for discovering the abnormal condition of the structure, eliminating the risk factors, and ensuring the normal operation of the bridge in order to set a reasonable safety monitoring threshold to ensure the safety warning and condition assessment of the bridge structure. A method of dynamic early warning by considering the temperature effect is adopted in this paper on the basis of the benchmark threshold. Based on the long-term deflection monitoring data of a bridge in Wuhan, the generalized Pareto distribution (GPD) extreme value analysis theory is used to set the benchmark threshold. Then, by constructing the seasonal autoregressive integrated moving average (SARIMA) long-span bridge temperature effect prediction model, the reference threshold is dynamically adjusted. Finally, it is compared with the traditional fixed threshold monitoring system. The results show that the dynamic threshold has stronger adaptability to the monitoring of cable-stayed bridges and can also achieve effective monitoring of local mutations in other periods. Dynamic threshold early warning can reduce the shortcomings of traditional early warning methods such as underreporting and misreporting. At the same time, the GPD extreme value analysis theory overcomes the disadvantage that the extreme value information is not fully utilized. It has an important application value for bridge health monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA