Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970990

RESUMO

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Microscopia Crioeletrônica , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Feminino , Pulmão/patologia , Masculino , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Estrutura Quaternária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Nature ; 615(7954): 907-912, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949194

RESUMO

Immunoglobulin M (IgM) is the first antibody to emerge during embryonic development and the humoral immune response1. IgM can exist in several distinct forms, including monomeric, membrane-bound IgM within the B cell receptor (BCR) complex, pentameric and hexameric IgM in serum and secretory IgM on the mucosal surface. FcµR, the only IgM-specific receptor in mammals, recognizes different forms of IgM to regulate diverse immune responses2-5. However, the underlying molecular mechanisms remain unknown. Here we delineate the structural basis of the FcµR-IgM interaction by crystallography and cryo-electron microscopy. We show that two FcµR molecules interact with a Fcµ-Cµ4 dimer, suggesting that FcµR can bind to membrane-bound IgM with a 2:1 stoichiometry. Further analyses reveal that FcµR-binding sites are accessible in the context of IgM BCR. By contrast, pentameric IgM can recruit four FcµR molecules to bind on the same side and thereby facilitate the formation of an FcµR oligomer. One of these FcµR molecules occupies the binding site of the secretory component. Nevertheless, four FcµR molecules bind to the other side of secretory component-containing secretory IgM, consistent with the function of FcµR in the retrotransport of secretory IgM. These results reveal intricate mechanisms of IgM perception by FcµR.


Assuntos
Proteínas Reguladoras de Apoptose , Imunoglobulina M , Proteínas de Membrana , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Imunoglobulina M/química , Imunoglobulina M/metabolismo , Imunoglobulina M/ultraestrutura , Mamíferos , Ligação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/ultraestrutura , Componente Secretório/química , Componente Secretório/metabolismo , Componente Secretório/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/ultraestrutura
3.
PLoS Pathog ; 15(6): e1007876, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216343

RESUMO

The guanylate-binding proteins (GBPs) belong to the dynamin superfamily of GTPases and function in cell-autonomous defense against intracellular pathogens. IpaH9.8, an E3 ligase from the pathogenic bacterium Shigella flexneri, ubiquitinates a subset of GBPs and leads to their proteasomal degradation. Here we report the structure of a C-terminally truncated GBP1 in complex with the IpaH9.8 Leucine-rich repeat (LRR) domain. IpaH9.8LRR engages the GTPase domain of GBP1, and differences in the Switch II and α3 helix regions render some GBPs such as GBP3 and GBP7 resistant to IpaH9.8. Comparisons with other IpaH structures uncover interaction hot spots in their LRR domains. The C-terminal region of GBP1 undergoes a large rotation compared to previously determined structures. We further show that the C-terminal farnesylation modification also plays a role in regulating GBP1 conformation. Our results suggest a general mechanism by which the IpaH proteins target their cellular substrates and shed light on the structural dynamics of the GBPs.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Shigella flexneri/enzimologia , Ubiquitina-Proteína Ligases/química , Proteínas de Bactérias/genética , Domínios Proteicos , Shigella flexneri/genética , Ubiquitina-Proteína Ligases/genética
4.
Proc Natl Acad Sci U S A ; 115(32): 8155-8160, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29987021

RESUMO

Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Curcumina/uso terapêutico , Sinergismo Farmacológico , Feminino , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Neoplasias/patologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Dyrk
5.
Nat Commun ; 14(1): 2650, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156765

RESUMO

Plasmodium falciparum causes the most severe malaria in humans. Immunoglobulin M (IgM) serves as the first line of humoral defense against infection and potently activates the complement pathway to facilitate P. falciparum clearance. A number of P. falciparum proteins bind IgM, leading to immune evasion and severe disease. However, the underlying molecular mechanisms remain unknown. Here, using high-resolution cryo-electron microscopy, we delineate how P. falciparum proteins VAR2CSA, TM284VAR1, DBLMSP, and DBLMSP2 target IgM. Each protein binds IgM in a different manner, and together they present a variety of Duffy-binding-like domain-IgM interaction modes. We further show that these proteins interfere directly with IgM-mediated complement activation in vitro, with VAR2CSA exhibiting the most potent inhibitory effect. These results underscore the importance of IgM for human adaptation of P. falciparum and provide critical insights into its immune evasion mechanism.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Microscopia Crioeletrônica , Antígenos de Protozoários , Imunoglobulina M , Anticorpos Antiprotozoários
6.
Nat Commun ; 8: 15758, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604689

RESUMO

Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Etilenos/biossíntese , Pirazinamida/farmacologia , Aminoácido Oxirredutases/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Pirazinamida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA