RESUMO
Compared with the common synthesis methods of metal-organic frameworks (MOFs), Co/Cu-based bi-MOFs composite catalyst CoXCu(10-X)-MOFs (X = 2, 4, 6, and 8) was prepared by a facile synthesis method at room temperature. The bi-MOFs composite catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The removal ability of sulfamethoxazole (SMX) by different Co:Cu rate bi-MOFs composite catalysts, single Co-based MOFs (zeolitic imidazolate framework-67, ZIF-67), and Cu-based MOFs (Hong Kong University of Science and Technology-1, HKUST-1) were investigated and the effects of peracetic acid (PAA) concentration, catalyst dosage, the common interfering substances (Cl-, HCO3-, SO42-, HA) in water, and SMX removal were investigated. Through the analysis of different free radical scavengers and the changes of surface elements before and after the reaction, the oxidation mechanism was further explored, and the stability of Co4Cu6-MOFs was explored through repeated recycling. The experimental results demonstrate that Co4Cu6-MOFs have a high catalytic activity for PAA. Co4Cu6-MOFs/PAA show the best removal effect of SMX under neutral conditions and the presence of Cl- and HCO3- can promote the removal of SMX.
Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Sulfametoxazol , Ácido Peracético , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , OxirreduçãoRESUMO
Introduction: Chaetomium subaffine LB-1 is a novel biocontrol strain that produces non-volatile metabolites that inhibit the growth of Botrytis cinerea. However, the specific metabolites and antimicrobial mechanism of the strain LB-1 remains unclear. Methods: In this study, the antifungal substances produced by strain LB-1, as well as the underlying mechanism of its inhibitory effect against B. cinerea, were explored using metabolomic and transcriptomic analysis. Results: The results found that 45 metabolites might be the key antifungal substances, such as ouabain, ferulic acid, chlorogenic acid, spermidine, stachydrine, and stearic acid. The transcriptomic analysis indicated that the inhibition effect of LB-1 on B. cinerea resulted in the upregulation of genes related to adenosine triphosphate (ATP)-binding cassette (ABC) transporters, peroxisome, ER stress, and multiple metabolic pathways, and in downregulation of many genes associated with the synthesis of cell walls/membranes, carbohydrate metabolism, cell cycle, meiosis, and DNA replication. Discussion: These results suggested that the inhibitory effect of strain LB-1 against B. cinerea might be due to the destroyed cell wall and membrane integrity exerted by antimicrobial substances, which affect cell metabolism and inhibit cell proliferation.
RESUMO
Sunlight exposure of grape clusters is frequently reported to influence grape aromas greatly. Among them, the effects of full shading (FS) of clusters on fruit quality and volatile compounds in grape berries has scarcely been investigated. In the present study, the effects of FS from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes were studied. The results showed that FS treatment reduced fruit size and berry weight, delayed fruit maturity, and decreased the contents of anthocyanins, phenols, and tannins in grape berries. In addition, volatile compounds in grape berries were analyzed, and 55 and 53 volatile compounds were detected in the control (CK) and FS groups, respectively. The results indicated that the concentrations of straight-chain fatty aldehydes, straight-chain fatty alcohols, straight-chain fatty acids, and branched-chain fatty acids, norisoprenoids, and total concentration of volatile compounds were all higher in FS group than in CK group. Specifically, FS treatment had significant promoting effects on the concentrations of ß-damascenone, terpineol, 2-ethyl-1-hexanol, and 2-hexenal, and remarkably decreased the concentrations of geranial, benzeneacetaldehyde, neral, and ethyl acetate. Partial least squares-discriminant analysis (PLS-DA) revealed a clear separation between the control (CK) and FS groups, and showed that 2-hexenal and hexanal were the main characteristic aroma compounds in the FS group. Moreover, an increase in the intensity of fruity, herbaceous, floral, and mushroom aromas was recorded in FS grapes. This study provides new insights into the effects of the exclusion of sunlight exposure on volatile compound accumulation in grape berries.
RESUMO
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
RESUMO
Microplastics have been identified as an emerging pollutant that poses a risk to the aquatic environment, and it is a challenge to find a suitable removal process. Electrocatalytic oxidation (ECO) technology has shown promising performance in removing various persistent organic pollutants. In this study, we prepared a new anode for removing polystyrene microplastics (PS MPs) by ECO. Ti/La-Sb-SnO2 electrodes doped with the rare earth element La as the active layer were synthesized to enhance the electrocatalytic activity. The lifespan of the electrode was improved by doping Mn, Co, or Ru as an intermediate layer modification between the titanium (Ti) substrate and the La-Sb-SnO2 active layer, respectively. The experimental results indicated that the addition of three types of intermediate layers led to different degrees of decrease in the catalytic activity of the electrode and the degradation performance of PS MPs. The addition of the Co intermediate layer had a negligible effect on the catalytic activity and performance of the Ti/La-Sb-SnO2 anode for PS degradation. In addition, the electrode lifespan with Co intermediate layer was significantly prolonged, which was 4.54, 2.38, and 1.19 times higher than the electrode without intermediate layer and the electrode with Ru and Mn intermediate layer, respectively. Therefore, Co was determined to be the optimal choice as the intermediate layer, and the production technique for the Ti/La/Co-Sb-SnO2 anodes was carefully adjusted. The degradation efficiency of PS MPs was optimized at a heat treatment temperature of 400 °C and a Sn: Co material ratio of 5:1, with a removal rate of 28.0 %. The ECO treatment also resulted in more pronounced changes in the structure and functional groups of the MPs. Various alkyl cleavage and oxidation products were detected after the treatment, suggesting that the oxidant (hydroxyl radicals) strongly interacted with the MPs, leading to their degradation. Overall, this work provided a new insight into removing MPs in water through the use of modified electrodes.
RESUMO
This study aims to determine the differentially expressed proteins in the pancreatic acinar cells undergoing apoptosis and oncosis stimulated with caerulein to explore different cell death process of the acinar cell. AR42J cells were treated with caerulein to induce cell model of acute pancreatitis. Cells that were undergoing apoptosis and oncosis were separated by flow cytometry. Then differentially expressed proteins in the two groups of separated cells were detected by shotgun liquid chromatography-tandem mass spectrometry. The results showed that 11 proteins were detected in both apoptosis group and oncosis group, 17 proteins were detected only in apoptosis group and 29 proteins were detected only in oncosis group. KEGG analysis showed that proteins detected only in apoptosis group were significantly enriched in 10 pathways, including ECM-receptor interaction, cell adhesion molecules, and proteins detected only in oncosis group were significantly enriched in three pathways, including endocytosis, base excision repair, and RNA degradation. These proteins we detected are helpful for us to understand the process of cell death in acute pancreatitis and may be useful for changing the death mode of pancreatic acinar cells, thus attenuating the severity of pancreatitis.
Assuntos
Células Acinares/metabolismo , Células Acinares/patologia , Apoptose/efeitos dos fármacos , Ceruletídeo/farmacologia , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica/métodos , Células Acinares/efeitos dos fármacos , Animais , Linhagem Celular , Cromatografia Líquida , Citometria de Fluxo , Ontologia Genética , Espectrometria de Massas , Anotação de Sequência Molecular , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Software , Fatores de TempoRESUMO
Nanoplastics can be produced directly from some artificial products, such as cosmetics, or indirectly from the breakup of large pieces of plastic waste. They have a small particle size, large specific surface area, and stable structure and can concentrate toxic compounds in water. The discharge of nanoplastics into the water environment through urban piping systems or surface runoff may lead to the contamination of surface water resources, which poses a great threat to the safety of drinking water. As a common adsorbent, granular activated carbon (GAC) is widely used in the advanced treatment of drinking water. However, most of the studies focused on the transport ability of nanoplastics in quartz sand, and there is a lack of research on the migration behavior of nanoplastics in activated carbon media. In this study, the stability and pore characteristics of GAC were studied, and its regeneration efficiency was investigated. The transport curves of PSNPs, which have a particle size of 98 ± 9 nm and specific surface area of about 67 m2/g, were compared under different ionic strengths, ionic species, flow rates, pH, and humic acid (HA) concentrations. And DLVO theory was used to analyze the transport behavior of nanoplastics in activated carbon column. All experiments were performed at room temperature to make the results generalizable. The results showed that GAC had stable pore structure and excellent adsorption capacity. The surface area and pore volume of GAC are 759 m2/g and 0.357 cm3/g, respectively. And the regeneration rate of GAC can reach 90% and 83.3% after the first two regeneration cycles. On the other hand, at high ionic strength and low pH, the repulsive barrier between PSNPs and activated carbon gradually disappeared; then, more PSNPs were deposited in the activated carbon media, and the concentration of PSNPs in the effluent water was lower. Both the flow rate and HA promoted the transport of PSNPs, but the breakthrough curves of PSNPs did not change significantly when the HA concentration was further increased. At the same ion concentration, PSNPs tend to deposit on the surface of activated carbon in the background solution of Ca2+ compared with Na+. This study reveals the migration mechanism of PSNPs in the activated carbon filter column, which is of great importance to ensure the safety of drinking water and human health.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal/química , Microplásticos , Poluentes Químicos da Água/química , Plásticos , Purificação da Água/métodos , AdsorçãoRESUMO
Bupleuri Radix is the dry root of certain species of the genus Bupleurum and is commonly used in traditional Chinese medicine. The increasing global demand for Bupleuri Radix cannot be fulfilled with wild populations only. Therefore, cultivated Bupleurum is now the main commercial source of this medicinal product. Different species of Bupleurum show different medicinal properties and clinical effects, making reliable authentication and assignment of correct botanical origin for medicinal species critical. However, accurate identification of the cultivated Bupleurum species is difficult due to dramatic morphological variations resulting from cultivation. In this study, we sampled 56 cultivated Bupleurum populations of six different morphotypes (Types A-F) from the main production areas of China, and 10 wild populations of four species were used as reference materials. Conventional DNA barcoding was conducted to identify cultivated Bupleurum species. Additionally, verification based on complete chloroplast genomes was performed and new chloroplast markers were developed and evaluated. The combination of these methods resulted in the successful identification of all cultivated Bupleurum individuals. Three chloroplast regions are recommended as additional barcodes for the genus: ycf4_cemA, psaJ_rpl33, and ndhE_ndhG. This is a reliable and promising strategy that can be applied to the authentication of natural products and the identification of other medicinal plant species with similar taxonomic problems.
Assuntos
Bupleurum , Genoma de Cloroplastos , Plantas Medicinais , Humanos , Código de Barras de DNA Taxonômico , Raízes de Plantas/genética , Plantas Medicinais/genética , Medicina Tradicional Chinesa , Bupleurum/genéticaRESUMO
Using a case-control design, we assessed the association between single nucleotide polymorphisms (SNPs) of growth and differentiation factor 5 (GDF5)/rs143383 gene and interaction with environments and knee osteoarthritis (KOA). We recruited 288 KOA patients from the First Clinical College, Henan University of Chinese Medicine between June 2017 and May 2018. There was significant difference in genotype distribution between case group and control group (χ2 = 22.661, P=0.000). The minor C allele was significantly higher in the case group than that in the control group (20.5 vs 8.1%, P=0.000, odds ratio (OR) = 1.62, 95% confidence interval (CI): 1.29-2.03). Significant differences were also observed in other gene models. For age, all models show significant differences (P<0.05) for those whose age was more than 60 years, and no significant difference was observed for those under 60 years. For non-smoking group, there were significant differences between case group and control group, and for smoker, significance level was found in TT compared with CC and allele gene models. Patients with drinking and Bbody mass index (MI )≥ 24 also showed significant relationship between rs143383 and osteoarthritis (OA) under the following models: TT vs CC (P=0.000, P=0.018), TT/CT vs CC (P=0.043), TT vs CT/CC (P=0.000, P=0.009), and T vs C (P=0.024, P=0.000). Other gene models indicated no significance (P>0.05). Our results revealed a possible genetic association between GDF5 and KOA, and the TT genotype of rs143383 increased the risk of KOA in Chinese Han population. The interaction between GDF5 gene and drinking, smoking, and obesity further increased the risk of KOA.
Assuntos
Fator 5 de Diferenciação de Crescimento/genética , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/epidemiologiaRESUMO
Using a case-control design, we assessed the association between single nucleotide polymorphisms of CYP3A4 gene rs4646437 polymorphism and the risk of hypertension in Chinese population. We recruited 450 hypertension patients from The First Clinical College, Henan University of Chinese Medicine between June 2017 and May 2018. There was a significant difference in genotype distribution between case group and control group (χ2 =18.169, P=0.000). The minor A allele was significantly higher in the case group than that in the control group (31.0 vs 24.8%, P=0.000, odds ratio [OR]=1.36, 95% confidence interval [95% CI]: 1.12-1.66). Significant differences were also observed in other gene models: the GA/AA genotype did not increase the risk of hypertension compared with GG genotype (OR=1.16, 95% CI: 0.90-1.49, P=0.259). Compared with GG/GA genotype, the AA genotype also increased the risk of hypertension (OR=2.34, 95% CI: 1.56-3.50, P=0.000). For additive model, the AA genotype was significantly associated with GG genotype (OR=2.25, 95% CI: 1.49-3.42, P=0.000). The same results were found for AA vs GA (OR=2.50, 95% CI: 1.60-3.89, P=0.000). For the allele genotype, the A allele frequency was significantly higher in the case group than that in the control group (31.0 vs 24.8%, P=0.002). The A allele of CYP3A4 rs4646437 was associated with an increased risk for hypertension (OR=1.36, 95% CI: 1.12-1.66, P=0.002). Our results revealed a possible genetic association between CYP3A4 gene rs4646437 and hypertension, and the AA genotype of rs4646437 increased the risk of hypertension in Chinese Han population, and this effect could be confirmed by multivariable analyses.
Assuntos
Citocromo P-450 CYP3A/genética , Hipertensão/genética , Polimorfismo de Nucleotídeo Único , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-IdadeRESUMO
X chromosome inactivation and genomic imprinting are two classic epigenetic regulatory processes that cause mono-allelic gene expression. In female mammals, mono-allelic expression of the long non-coding RNA gene X-inactive specific transcript (XIST) is essential for initiation of X chromosome inactivation upon differentiation. We have previously demonstrated that the central factor of super elongation complex-like 3 (SEC-L3), AFF3, is enriched at gamete differentially methylated regions (DMRs) of the imprinted loci and regulates the imprinted gene expression. Here, we found that AFF3 can also bind to the DMR downstream of the XIST promoter. Knockdown of AFF3 leads to de-repression of the inactive allele of XIST in terminally differentiated cells. In addition, the binding of AFF3 to the XIST DMR relies on DNA methylation and also regulates DNA methylation level at DMR region. However, the KAP1-H3K9 methylation machineries, which regulate the imprinted loci, might not play major roles in maintaining the mono-allelic expression pattern of XIST in these cells. Thus, our results suggest that the differential mechanisms involved in the XIST DMR and gDMR regulation, which both require AFF3 and DNA methylation.