Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Build Environ ; 208: 108590, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34812218

RESUMO

The air distribution system in an airliner plays a key role in maintaining a comfortable and healthy environment in the aircraft cabin. To evaluate the performance of a novel displacement ventilation (DV) system and a traditional mixing ventilation (MV) system in an airliner cabin, this study conducted experiments and simulations in a seven-row cabin mockup. This investigation used ultrasonic anemometers and T-thermocouples to measure the air velocity, temperature and distribution of 1 µm and 5 µm particles. Simulation verifications were performed for these operating conditions, and additional scenarios with different occurrence source locations were also simulated. This study combined the Wells-Riley equation with a real case based on a COVID-19 outbreak among passengers on a long-distance bus to obtain the COVID-19 quanta value. Through an evaluation of the airflow organization, thermal comfort, and risk of COVID-19 infection, the two ventilation systems were compared. This investigation found that polydisperse particles should be used to calculate the risk of infection in airliner cabins. In addition, at the beginning of the pandemic, the infection risk with DV was lower than that with MV. In the middle and late stages of the epidemic, the infection risk with MV can be reduced when passengers wear masks, leading to an infection risk approximately equal to that of DV.

3.
Build Environ ; 207: 108413, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36568650

RESUMO

To control the transport of particles such as the SARS-CoV-2 virus in airliner cabins, which is a significant concern for the flying public, effective ventilation systems are essential. Validated computational fluid dynamics (CFD) models are frequently and effectively used to investigate air distribution and contaminant transportation. The complex geometry and airflow characteristics in airliner cabins pose a challenge to numerical CFD validation. The objective of this investigation was to identify accurate and affordable validation processes for studying the airflow field and particulate contaminant distribution in airliner cabins during the design process for different ventilation systems. This study quantitatively evaluated the effects of ventilation system, turbulence model, particle simulation method, geometry simplification, and boundary condition assignment on airflow and particulate distributions in airliner cabins with either a mixing ventilation (MV) system or a displacement ventilation (DV) system calculated by CFD. The results showed that among four turbulence models, the standard k-ε, RNG k-ε, realizable k-ε and SST k-ω models, the prediction by the realizable k-ε model agreed most closely with the experimental data. Meanwhile, the steady Eulerian method provided a reasonable prediction of the particle concentration field with low computing cost. The computational domain should be simplified differently for the DV system and the MV system with consideration of the simulation accuracy and computing cost. For more accurate modeling results, the boundary conditions should be assigned in greater detail, taking into account the uniformity on the boundary.

4.
Build Environ ; 202: 108049, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34155419

RESUMO

During the COVID-19 pandemic, exposure to particles exhaled by infected passengers in commercial aircraft cabins has been a great concern. Currently, aircraft cabins adopt mixing ventilation. However, complete mixing may not be achieved, and thus the particle concentration in the respiratory zone may vary from seat to seat in a cabin. To evaluate the particle exposure in a typical single-aisle aircraft cabin, this investigation constructed an aircraft cabin mockup for experimental tests. Particles were released from a single source or dual sources at different seats to represent particles exhaled by infected passengers. The particle concentrations in the respiratory zones at various seats were measured and compared. The particle exposure was evaluated in both a cross section and a longitudinal section. Leaving the middle seat vacant to reduce particle exposure was also addressed. In addition, the velocity fields and air temperatures were measured to provide a better understanding of particle transport. It was found that the particle exposure at the window seat is always the lowest, regardless of the particle release locations. If the passenger seated in the middle does not release particles, his/her presence enhances the particle dispersion and thereby reduces the particle exposure for adjacent passengers. In the cabin mockup, the released particles can be transported across at least four rows of seats in the longitudinal direction.

6.
Sci Rep ; 7(1): 14826, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093534

RESUMO

Surfaces and objects surround us, and touching them is integral to everyday life. Pathogen contaminated surfaces (fomites) are known to transmit diseases. However, little is known about the ways and speed at which surfaces become contaminated. We found that under certain conditions, the number of contaminated surfaces grows logistically, corresponding to possible rapid transmission of infection. In such a surface network, pathogen can be transmitted great distances quickly-as far as people move. We found that the surface contamination network in aircraft cabins exhibits a community structure, with small communities connected by the aisle seatback surfaces and toilets, which are high-touch surfaces. In less than two to three hours, most high-touch surfaces in the cabin are contaminated, and within five to six hours nearly all touchable surfaces are contaminated. During short haul flight, aisle passengers have higher fomite exposure. This closely matches the spatial infection pattern of one reported inflight norovirus outbreaks. Our model is generally applicable to other crowded settings. The commonly repeated advice to "wash hands frequently" may be replaced in future by more strategic advice such as "clean surfaces right now", or advice based on who should wash their hands, and when.


Assuntos
Transmissão de Doença Infecciosa , Fômites/microbiologia , Fômites/virologia , Aeronaves , Surtos de Doenças , Humanos , Modelos Logísticos , Medição de Risco , Propriedades de Superfície , Fatores de Tempo , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA