Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526208

RESUMO

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Assuntos
Betacoronavirus/química , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Domínio Catalítico , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Modelos Químicos , Modelos Moleculares , RNA Viral/metabolismo , SARS-CoV-2 , Transcrição Gênica , Replicação Viral
2.
Environ Monit Assess ; 195(9): 1023, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548802

RESUMO

Economic development has rapidly progressed since the implementation of reform and opening up policies, posing significant challenges to sustainable development, especially to vegetation, which plays a crucial role in maintaining ecosystem service functions and promoting green low-carbon transformations. In this study, we estimated the fractional vegetation cover (FVC) in Shandong Province from 2000 to 2020 using the Google Earth Engine (GEE) platform. The spatial and temporal changes in FVC were analyzed using gravity center migration analysis, trend analysis, and geographic detector, and the vegetation changes of different land use types were analyzed to reveal the internal driving mechanism of FVC changes. Our results indicate that vegetation cover in Shandong Province was in good condition during the period 2000 to 2020. The high vegetation cover classes dominated, and overall changes were relatively small, with the center of gravity of vegetation cover generally shifting towards the southwest. Land use type, soil type, population density, and GDP factors had the most significant impact on vegetation cover change in Shandong Province. The interaction of these factors enhanced the effect on vegetation cover change, with land use type and soil type having the highest degree of influence. The observational results of this study can provide data support for the policy makers to formulate new ecological restoration strategies, and the findings would help facilitate the sustainability management of regional ecosystem and natural resource planning.


Assuntos
Ecossistema , Monitoramento Ambiental , China , Conservação dos Recursos Naturais , Solo , Desenvolvimento Sustentável
3.
Anal Bioanal Chem ; 414(29-30): 8263-8276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201045

RESUMO

Dendritic organic molecular gels are a promising class of three-dimensional network compounds. Here, we have synthesized a new type of dendritic organic molecular gel stationary phase (SiO2-G3) by using benzyl alcohol as raw material and dimethyl 5-hydroxyisophthalate as growth unit to synthesize a third-generation organic molecular gel G3, which grafted onto the silica surface by cyanogen chloride (CC). The developed stationary phase not only exhibits high molecular shape selectivity but also has a RPLC/HILIC/IEC mixed-mode characteristic for HPLC due to the ordered structure, the multiple strong π-π stacking interactions and the introduction of a hydrophilic triazine fraction during the grafting process. Compared with a commercial C18 column, the developed column exhibited flexible selectivity, enhanced separation performance and excellent separation of monosubstituted benzene, polycyclic aromatic hydrocarbons (PAHs), positional isomers, nucleosides and nucleobases, benzoic acid and aniline compounds. In addition, the new column provided baseline separation of polycyclic aromatic hydrocarbon contaminants in Yellow River water, verifying its potential for application in the analysis of real samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida de Alta Pressão/métodos , Géis , Hidrocarbonetos Policíclicos Aromáticos/análise
4.
Environ Sci Technol ; 55(8): 5347-5356, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33724005

RESUMO

Purposively designing environmental advanced materials and elucidating the underlying reactivity mechanism at the atomic level allows for the further optimization of the removal performance for contaminants. Herein, using well facet-controlled I-Cu2WS4 single crystals as a model transition metal chalcogenide sorbent, we investigated the adsorption performance of the exposed facets toward gaseous elemental mercury (Hg0). We discovered that the decahedron exhibited not only facet-dependent adsorption properties for Hg0 but also recrystallization along the preferential [001] growth direction from a metastable state to the steady state. Besides, the metastable crystals with a predominant exposure of {101} facets dominated the promising adsorption efficiency (about 99% at 75 °C) while the saturated adsorption capacity was evaluated to be 2.35 mg·g-1. Subsequently, comprehensive characterizations and X-ray adsorption fine structure (XAFS), accompanied by density functional theory (DFT) calculations, revealed that it might be owing to the coordinatively unsaturated local environment of W atoms with S defects and the surface relative stability of different facets, which could be affected by the change in surface atom configuration. Hence, the new insight into the facet-dependent adsorption property of transition metal chalcogenide for Hg0 may have important implications, and the atomic-level study directly provides instructions for development and design of highly efficient functional materials.


Assuntos
Mercúrio , Adsorção
5.
Angew Chem Int Ed Engl ; 59(7): 2659-2663, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31797510

RESUMO

A series of stable heterometallic Fe2 M cluster-based MOFs (NNU-31-M, M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2 O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low-valent metal M accepts electrons to reduce CO2 , and high-valent Fe uses holes to oxidize H2 O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU-31-Zn exhibits the highest HCOOH yield of 26.3 µmol g-1 h-1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.

6.
Biochem Biophys Res Commun ; 497(1): 122-126, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29421663

RESUMO

The circRNAs are differentially expressed in a wide range of cancers in regulating their initiation and progression, and could be used to make a diagnosis for some diseases like tumor as a new biomarker. However, the correlation and the mechanism of action between circRNAs and colorectal cancer (CRC) are still unclear. In this study, by using qRT-PCRs, we detected the expression level of hsa_circ_0001649 in tissue and serum samples from CRC patients, and the cultured cell has been detected. We found that the hsa_circ_0001649 in CRC is significantly lower than the expression level of correspondent nontumorous tissues (n = 64, P < 0.01). We also tested the HCT116 cell lines, and the similar result is observed (n = 15, P < 0.01). Moreover, we detected the serum samples obtained before and after surgery, showing significantly the expression level of hsa_circ_0001649 in the same patient is up-regulated after surgery (n = 18, P < 0.01). Besides, we analyzed the correlation between clinicopathological date and the expression level of hsa_circ_0001649, we found that hsa_circ_0001649 expression level is closely associated with pathological differentiation (P = 0.037), and the result also illustrated that the expression level of hsa_circ_0001649 is no direct correlation with age, gender, TMN stage, lymphatic metastasis, CEA, CA19-9, and CA-724 levels. The area under the receiver operating characteristic (ROC) curve was 0.857. In conclusion, this study showed that the expression level of hsa_circ_0001649 was down-regulated in CRC and could use it as a new biomarker for specific and sensitive inspection of CRC.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/epidemiologia , RNA/sangue , Biomarcadores , China/epidemiologia , Neoplasias Colorretais/genética , Feminino , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , RNA/genética , RNA Circular , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
7.
J Comput Chem ; 36(7): 449-58, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25565146

RESUMO

Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed.

8.
J Chem Phys ; 141(24): 244316, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554160

RESUMO

Lanthanide tetrahalide molecules LnX4 (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX4, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX4 about one third more than in LnX3.

9.
J Chromatogr A ; 1733: 465228, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39163701

RESUMO

In this study, using chiral L-lysine as the molecular skeleton, three kinds of L-lysine-derived gelators (GBLB, GBLF and GFLF) were synthesized and then bonded to the surface of silica matrix (5 µm) by amide condensation to prepare a series of multifunctional chromatography stationary phases (GBLB-SiO2, GBLF-SiO2, and GFLF-SiO2) were prepared. The L-lysine-derived gelators not only possess chiral recognition ability, but also can spontaneously form oriented and ordered network structures in liquid medium through the interaction of non-covalent bonding forces such as hydrogen bonding, π-π stacking, and van der Waals forces. The comprehensive effect of multiple weak interaction sites enhances the molecular recognition ability and further improves the separation diversity of different types of compounds on stationary phases. The separation and evaluation of chiral compounds showed that benzoin, 1-phenyl-ethanol, 1-phenyl-propanol and 6-hydroxyflavanone could be separated in normal phase mode (NPLC). The separation of different types of non-chiral compounds, such as sulfonamides, nucleosides, nucleobases, polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids, were achieved in hydrophilic interaction/reversed-phase/ion-exchange mode (HILIC/RPLC/IEC), and the separation of polarized compounds could be performed under the condition of ultrapure water as the mobile phase, which has the typical retention characteristics of per aqueous liquid chromatography (PALC). The effects of organic solvent content, temperature, pH value, and buffer salt concentration on the retention and separation performance of the column were investigated. Comparison of the three prepared columns showed that the separation performance (such as aromatic selectivity) could be improved by increasing the types of functional groups on the surface of the stationary phase and the number of aromatic groups. In a word, the prepared stationary phase have multiple retention properties, can simultaneously separate chiral compounds and various types of achiral compounds. This work provides an idea for developing multifunctional liquid chromatography stationary phase materials, and further expands the application of gelators in separation science.

10.
J Chromatogr A ; 1733: 465249, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39178658

RESUMO

Geometric isomers tend to have similar polarities and differ only in molecular shape. Vigorously developing new stationary phases to meet the requirements for the separation of isomers that have similar physicochemical properties is still an urgent topic in separation science. Poly (arylene ether)-based dendrimers are known for their multifunctional branched peripheral structures and high self-assembly properties. In this paper, two amphiphilic dendritic organic small molecule gelling agents based on poly (aryl ether), PAE-ANT and PAE-PA, were prepared and conjugated to the silica surface. SiO2@PAE-ANT and SiO2@PAE-PA were used as HPLC stationary phases for the separation of non-polar shape-restricted isomers. Both stationary phases have very high molecular shape selectivity for isomers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), tocopherols and carotenoids. Separation of cis-trans geometric isomers such as diethylstilbestrol and polar compounds such as monosubstituted benzenes and anilines can also be achieved. These two columns offer more flexible selectivity and higher separation performance than commercial C18 and phenyl columns. There is a difference in molecular shape selectivity between the two stationary phases for the same analyte test probes. SiO2@PAE-ANT showed slightly better linear selectivity for non-polar shape-restricted isomers compared to SiO2@PAE-PA with Janus-type PAE-PA bonding phase. This separation behavior may be attributed to the ordered spatial structure formed by the gel factor on the surface of the stationary phase and the combined effect of multiple weak interaction centers (hydrophobic, hydrophilic, hydrogen bonding and π-π interactions). It was also possible to separate nucleoside and nucleobase strongly polar compounds well in the HILIC mode, suggesting that hydrophilic groups in PAE-ANT and PAE-PA are involved in the interactions, reflecting their amphiphilic nature. The results show that the ordered gelation of dendritic organic small molecule gelators on the SiO2 surface, along with multiple carbonyl-π, π-π and other interactions, play a crucial role in the separating shape-restricted isomers. The integrated and ordered functional groups serve as the primary driving force behind the exceptionally high molecular shape selectivity of SiO2@PAE-ANT and SiO2@PAE-PA phases. Alterations in the structure of dendritic organic small molecule gelators can impact both molecular orientation and recognition ability, while changes in the type of functional groups influences the separation mechanism of shape-restricted isomers.

11.
ACS Synth Biol ; 13(1): 269-281, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061052

RESUMO

CRISPR-Cas9 systems have been widely harnessed for diverse genome editing applications because of their ease of use and high efficiency. However, the large molecular sizes and strict PAM requirements of commonly used CRISPR-Cas9 systems restrict their broad applications in therapeutics. Here, we report the molecular basis and genome editing applications of a novel compact type II-A Eubacterium ventriosum CRISPR-Cas9 system (EvCas9) with 1107 residues and distinct 5'-NNGDGN-3' (where D represents A, T, or G) PAM specificity. We determine the cryo-EM structure of EvCas9 in a complex with an sgRNA and a target DNA, revealing the detailed PAM recognition and sgRNA and target DNA association mechanisms. Additionally, we demonstrate the robust genome editing capacity of EvCas9 in bacteria and human cells with superior fidelity compared to SaCas9 and SpCas9, and we engineer it to be efficient base editors by fusing a cytidine or adenosine deaminase. Collectively, our results facilitate further understanding of CRISPR-Cas9 working mechanisms and expand the compact CRISPR-Cas9 toolbox.


Assuntos
Sistemas CRISPR-Cas , Eubacterium , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , DNA/genética
12.
Int J Biol Macromol ; 258(Pt 1): 128772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103670

RESUMO

This study prepared type 3, type 4, and type 5 quinoa resistant starch (QRS3, QRS4, and QRS5) from quinoa starch (QS), compared their structural and physicochemical properties and evaluated their noodle-making potential. The results showed that the molecular weight of QRS3 decreased, the number of short-chain molecules increased, and its crystal type changed to B-type after gelatinization, enzymatic hydrolysis, and retrogradation. QRS4 is a phosphorylated cross-linked starch, with a surface morphology, particle size range, and crystal type similar to QS, but displaying modified thermodynamic properties. QRS5 is a complex of amylose and palmitic acid. It displays typical V-type crystals, mainly composed of long chain molecules and primarily exhibits a block morphology. The noodles prepared by replacing 20 % wheat flour with QS, QRS3 and QRS5 have higher hardness and are suitable for people who like elasticity and chewiness. QRS4 noodles are softer and suitable for people like elderly and infants who prefer soft foods. In conclusion, significant differences were evident between the fine structures, crystal types, physicochemical properties and potential applications of QS and the three QRSs. The results may expand the application of QS and QRS in the food and pharmaceutical industries.


Assuntos
Chenopodium quinoa , Amido , Humanos , Idoso , Amido/química , Amido Resistente , Chenopodium quinoa/química , Farinha , Triticum , Amilose/química
13.
Anal Chim Acta ; 1288: 342156, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220288

RESUMO

BACKGROUND: Molecular shape selectivity, based on the size and shape parameters of the molecule, such as length and planarity, is a separation process that can be used for compounds with restricted shapes, such as isomers. The separation of geometric isomers is challenging because these compounds have similar physicochemical properties but differ slightly in molecular shape. The ability to separate and quantify these isomers is important in high performance liquid chromatography (HPLC), which is one of the most widely used techniques in separation science today, because the shape of the molecule has a strong influence on biological processes. RESULTS: We prepared symmetrical discoidal dendrimeric organomolecule gelators (GSDM) and o-phenylenediamine-derived low-molecular-weight dendrimeric organomolecule gelators (G1) and bonded them to silica surfaces. The dendritic organic compound-grafted silica (SiO2@GSDM and SiO2@G1) was used as HPLC stationary phases for the separation of shape-restricted isomers of polycyclic aromatic hydrocarbons (PAHs), carotenoids and tocopherols. The two phases exhibit a very high molecular shape selectivity compared to the commercially available alkyl phases. There are differences in molecular shape selectivity between the two stationary phases. Changes in the chemical structure of dendritic organic compounds can alter the orientation of the molecules, as well as changes in the molecular recognition ability. It was found that SiO2@GSDM has high molecular linear selectivity for PAHs at different temperatures, even at 50 °C. The planar selectivity of SiO2@GSDM was better for triphenylene and o-terphenyl benzenes compared to SiO2@G1. SIGNIFICANCE: This separation behavior may be attributed to the combined effect of weak interaction centers, which allowed the effective separation of bioactive and shape-restricted isomers through multiple interactions. Furthermore, SiO2@GSDM showed better separation of tocopherols and carotenoids, suggesting that the backbone and ordered structure of organic molecular gelators is an effective way to improve the shape selectivity of the molecules, whereas the molecular orientation of the functional groups influences the separation mechanism of the shape-restricted isomers.

14.
Environ Sci Pollut Res Int ; 31(25): 36849-36860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758436

RESUMO

A hydrothermal synthesis method was developed to produce high crystallinity ZSM-5 zeolite using coal gasification coarse slag (CGCS) as the raw material. Instead of the expensive NaOH(s.), Na2SiO3(s.) was utilized to activate, depolymerize, and recombine Si and Al elements in the CGCS. The mother liquor circulation technology was employed to recover and reuse raw materials and residual reagents (Na2SiO3(aq.) and TPABr), reducing waste emissions and enhancing resource utilization efficiency. The synthesized ZSM-5 had a specific surface area of 455.675 m2 g-1, pore volume of 0.284 cm3 g-1, and pore diameter of 2.496 nm. The influence of various factors on the morphology and crystallinity of ZSM-5 was investigated, resulting in the production of ZSM-5 with higher specific surface area and pore volume. Adsorption experiments showed that WU-ZSM-5 exhibited a removal efficiency of 85% for ammonia nitrogen (NH4+-N(aq.)), validating its effectiveness in coal chemical wastewater purification. The mother liquor recycling technology enabled zero-emission utilization of solid waste resources and improved the utilization rate of alkali and template to 90%. These results demonstrate the potential application of the developed method in the efficient treatment of coal chemical wastewater.


Assuntos
Carvão Mineral , Águas Residuárias , Zeolitas , Zeolitas/química , Águas Residuárias/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
15.
Phys Chem Chem Phys ; 15(20): 7839-47, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23598823

RESUMO

The trends in the series of lanthanoid (lanthanide) trifluoride molecules LnF3 (Ln = La to Lu) are governed by the valence-active Ln(4f,5d,5p,6s) shells. The series is investigated by quasi-relativistic density functional theory at both the scalar and spin-orbit-coupled levels. Integrating many of the previous experimental and theoretical deductions, we obtain the following comprehensive picture: (1) The comparatively small Ln-F bond length contraction of 14 pm from La to Lu is rather smooth but weakly modulated by spin-orbit coupling. (2) From La to Lu the floppy structure becomes more quasi-planar. (3) The heterolytic LnF bond energies (⅓LnF3→⅓Ln(3+) + F(-)) at the spin-orbit averaged level increase smoothly from 15.3 to 16.3 eV for La to Lu, only the 'divalent' lanthanoids Eu and Yb are outliers with 0.2 eV higher bond energies. (4) The homolytic LnF bond energies (⅓LnF3→⅓Ln + F) however show an overall W-shaped double-periodicity with maxima for LaF3, GdF3 and LuF3, decreasing from La to Eu and from Gd to Yb, the large individual variations being caused by different spin-orbit coupling and Coulomb interaction effects in Ln(0) and LnF3. (5) The Ln-F interaction is basically ionic (increasing with decreasing ionic radii) with some dative Ln(3+)← F(-) bonding. (6) The latter is of the Ln(5d)-F(2p) type with a rather constant bond order from La to Lu, with small Ln(5p) and very small Ln(4f) semi-core contributions decreasing from La to Lu. All these trends are rationalized.

16.
RSC Adv ; 13(17): 11472-11479, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063739

RESUMO

Antibiotic-like organic pollutants are harmful to aquatic ecosystems and seriously disrupt the ecological balance. Herein, we propose a simple and versatile method to prepare cobalt-manganese oxides with high specific surface area and abundant oxygen vacancies using low-temperature reduction crystallization, which greatly facilitates the adsorption and electron transfer between the catalyst, PDS, and TC, thus accelerating the degradation of tetracycline (TC). Among them, the degradation efficiency of TC in the CoMn2O4(C)/PDS system was 99.8% in 60 min and the degradation rate remained above 90% after four cycles. The possible degradation mechanism is also discussed, where Co is the main metal active center of the catalyst and Mn plays an auxiliary catalytic role to promote the generation of reactive radicals in PDS through redox interactions between Co and Mn, where SO4 -˙ is the main active species for TC degradation. Finally, the possible degradation pathways of TC are proposed and the toxicity of the intermediates is evaluated. Findings from this work will shed light on the rational design of bimetallic oxide catalysts.

17.
J Colloid Interface Sci ; 622: 577-590, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526415

RESUMO

Environmental H2O is an influential factor in the low-temperature catalytic oxidation of volatile organic compounds (VOCs), and it significantly impacts the reaction process and mechanism. Here, a series of rod-like Cu-Mn oxides were synthesised by pyrolysing Cu/Mn-BTC for acetone oxidation. The results confirm that the formation of multiphase interfaces have more excellent catalytic performance compared to single-phase catalysis. This phenomenon can be attributed to the formation of multiphase interfaces, which resulted in the synthesized catalysts with more active oxygen species and defective sites. The CuMn2Ox catalyst exhibited superior catalytic performance (T90 = 150 °C), high water resistance and long-term stability. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy and thermal desorption-gas chromatography-mass spectrometry results indicated that the degradation pathway of acetone was as follows: acetone ((CH3)2CO*) â†’ enolate complexes ((CH2) = C(CH3) O*) â†’ acetaldehyde ((CH3CHO*) â†’ acetate (CH3COO*) â†’ formate (HCOO*) â†’ CO2 and H2O. At a low-temperature, water vapour dissociated a large number of activated hydroxyl groups on the multiphase interface, which promoted the dissociation of enolate complexes and acetaldehyde species. This composite oxide is a promising catalyst for removing oxygenated VOCs at high humidity.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Acetaldeído , Acetona , Catálise , Oxirredução , Óxidos/química , Compostos Orgânicos Voláteis/química
18.
J Colloid Interface Sci ; 628(Pt A): 448-462, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932681

RESUMO

Peroxymonosulfate-based advanced oxidation processes (PMS-AOPs) are effective methods for the degradation of highly toxic and refractory nitrogen-containing heteroatomic pollutants such as benzotriazole (BTA). The construction of catalytic materials with multiple active centers is the key to generating abundant reactive oxygen species (ROS) and achieving high mineralization efficiency in PMS-AOPs. Herein, carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets catalyst (CoCuNS@CNTs) was obtained by pyrolysis of two-dimensional (2D) MOF precursor. The degradation rate constant of BTA in CoCuNS@CNTs/PMS system was 4 times higher than that of metal oxide nanosheets catalyst without CNTs, while exhibiting high cycling stability and mineralization efficiency. Serial characterizations demonstrated that CoCu nanosheets was formed by CNTs-induced the directional assembly of metal oxide nanoparticles, which had high graphitization and abundant oxygen vacancies and could greatly facilitated the adsorption and electron transfer between the catalyst, PMS and BTA. Moreover, the doping of Cu species significantly improved PMS utilization and accelerated the Co(III)/Co(II) redox cycle. Both radicals (SO4-• and •OH) and non-radicals (1O2) played a role in CuCoNS@CNTs/PMS system and the contributions of ROS were 72.2%, 11.1% and 16.7%, respectively. Meanwhile, the concentration of key ROS (SO4-•) production increased from 4.76 µM to 8.56 µM compared with cobalt oxide nanosheets (CoNS). Three degradation pathways of BTA were proposed: benzene ring opening, benzene ring hydroxylation and triazole ring dimerization. Finally, the toxicity changes during the degradation process were measured and the toxicity of eleven intermediates was evaluated. This study may provide new insights into the degradation of persistent organic pollutants.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Benzeno , Cobalto , Cobre , Nanotubos de Carbono/toxicidade , Nitrogênio , Óxidos , Oxigênio , Peróxidos , Poluentes Orgânicos Persistentes , Espécies Reativas de Oxigênio , Triazóis/toxicidade
19.
Chem Commun (Camb) ; 58(49): 6954-6957, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35642611

RESUMO

Inspired by the working principle of natural spiderweb and long-persistence phosphors, we have synthesized a spiderweb-like nanocomposite in which CoS quantum dots are confined in N-doped carbon frameworks/carbon nanotubes (CNTs). The intimate combination of three-dimensional conductive networks of CoS/CNTs with abundant active sites allows effective capture of sulfate radicals via both physical confinement and chemical bonding and accelerates the redox kinetics significantly. Furthermore, in virtue of the light storing and luminescence behaviors of long-persistence phosphors, the all-weather CoS/CNTs produced can realize an optimum degradation efficiency of 64% under dark conditions. Overall, this work reveals a significant step forward for building a desirable all-weather catalyst with abundant active sites for potential use in degradation under dark conditions.

20.
Environ Sci Pollut Res Int ; 28(17): 21159-21173, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33405145

RESUMO

Minimization and stabilization of arsenic-containing smelting wastewater and residue is of crucial issue to resolve the arsenic contamination. Calcium arsenate is a typical precipitate produced from disposal of smelting acid wastewater. However, it suffers from poor stability and large quantity in the aqueous environment. Copper slags, as for rich-iron species materials, are disposed of in landfills or open-air tailing ponds, which are another waste material that have not been effectively utilized for reuse application. In this study, strategy for sequence of phase-controlled and thermal-doped copper slag technique was used as the efficient means of minimization and stabilization of arsenic-bearing resides. Detailed results were showed that stepwise phase precipitation significantly reduced the formation of hazardous solid waste; the total solid waste was reduced 47.0 wt% because the gypsum was separated from arsenic calcium residues through two-step methods. Subsequently, solid waste stabilization was achieved by using thermal-doped slag, and the high yield of magnetite (75.6 wt%) and fayalite (22.7 wt%) was produced from copper slags. It was proved that these iron-rich species displayed the remarkable performance to stabilize arsenic due to the formation of Fe-As-Ca-O complex; compared with the raw solid waste, the arsenic leachability was decreased from 280.75 to 1.05 mg/L via copper slag stabilization process. The immobilized arsenic content was 25.0 wt%. Overall, the proposed strategy for stepwise phase-controlled and thermal-doped copper slags was a potentially effective strategy for reducing emissions and pollution of arsenic-containing wastewater and residue.


Assuntos
Arsênio , Arsênio/análise , Cobre , Resíduos Perigosos , Resíduos Sólidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA