Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Nitric Oxide ; 150: 18-26, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971520

RESUMO

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.

2.
Biomed Eng Online ; 23(1): 62, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918766

RESUMO

Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.


Assuntos
Retinopatia Diabética , Proteínas Nucleares , Retinopatia Diabética/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Animais , Epigênese Genética
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 19-24, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433626

RESUMO

Objective To analyze the current situation of dietary diversity and caregiver self-efficacy for complementary feeding among infants and young children aged 6 to 23 months in rural Nanchong city,Sichuan province,and to explore the relationship between dietary diversity and caregiver self-efficacy. Methods Multi-stage randomized cluster sampling method was used to select infants and young children aged 6 to 23 months and their caregivers in rural areas of Nanchong city,Sichuan province as the subjects.A structured questionnaire was designed to collect the basic information of the subjects,dietary diversity,and caregiver self-efficacy for complementary feeding.Multivariate Logistic regression was adopted to analyze the relationship between the dietary diversity and caregiver self-efficacy for complementary feeding of infants and young children. Results A total of 770 pairs of infants and young children and their caregivers were included.The minimum pass rate of dietary diversity was 61.56%(474/770) for all the infants and young children and 45.00%(108/240),69.16%(287/415),and 68.70%(79/115) for the infants and young children aged 6 to 11,12 to 17,and 18 to 23 months,respectively.The results of regression analysis showed that the caregiver self-efficacy of complementary feeding was a contributing factor for qualified dietary diversity of infants and young children in the case of other confounders being controlled(OR=1.42,95%CI=1.17-1.73,P<0.001). Conclusion The dietary diversity for infants and young children in rural Nanchong city,Sichuan province needs to be improved,and caregivers with higher self-efficacy of complementary feeding are more likely to provide diversified complementary feeding for infants and young children.


Assuntos
Cuidadores , Autoeficácia , Criança , Lactente , Humanos , Pré-Escolar , Dieta , China
4.
Mol Carcinog ; 62(5): 652-664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752346

RESUMO

Hydrogen sulfide (H2 S) has been widely recognized as one of gasotransmitters. Endogenous H2 S plays a crucial role in the progression of cancer. However, the effect of endogenous H2 S on the development of nasopharyngeal carcinoma (NPC) is still unknown. In this study, aminooxyacetic acid (AOAA, an inhibitor of cystathionine-ß-synthase), dl-propargylglycine (PAG, an inhibitor of cystathionine-γ-lyase), and l-aspartic acid (l-Asp, an inhibitor of 3-mercaptopyruvate sulfurtransferase) were adopted to detect the role of endogenous H2 S in NPC growth. The results indicated that the combine (PAG + AOAA + l-Asp) group had higher inhibitory effect on the growth of NPC cells than the PAG, AOAA, and l-Asp groups. There were similar trends in the levels of apoptosis and reactive oxygen species (ROS). In addition, the combine group exhibited lower levels of phospho (p)-extracellular signal-regulated protein kinase but higher expressions of p-p38 and p-c-Jun N-terminal kinase than those in the AOAA, PAG, and l-Asp groups. Furthermore, the combine group exerted more potent inhibitory effect on NPC xenograft tumor growth without obvious toxicity. In summary, suppression of endogenous H2 S generation could dramatically inhibit NPC growth via the ROS/mitogen-activated protein kinase pathway. Endogenous H2 S may be a novel therapeutic target in human NPC cells. Effective inhibitors for H2 S-producing enzymes could be designed and developed for NPC treatment.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Nasofaríngeas , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cistationina , Carcinoma Nasofaríngeo , Espécies Reativas de Oxigênio , Sulfetos/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico
5.
Exp Cell Res ; 420(1): 113341, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075445

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a major cause of cancer-related deaths. We have previously connected a non-sulfated glycosaminoglycan, hyaluronic acid (HA), with a common hydrogen sulfide (H2S) donor, 5-(4-hydroxyphenyl)-3H-1,2-dithiol-3-thione (ADT-OH), to reconstruct a novel conjugate, HA-ADT. In this study, we determined the effect of HA-ADT on the growth of ESCC. Our data suggested that HA-ADT exerted more potent effects than sodium hydrosulfide (NaHS, a fast H2S-releasing donor) and morpholin-4-ium (4-methoxyphenyl)-morpholin-4-ylsulfanylidenesulfido-λ5-phosphane (GYY4137, a slow H2S-releasing donor) on inhibiting the viability, proliferation, migration, and invasion of human ESCC cells. HA-ADT increased apoptosis by suppressing the protein expressions of phospho (p)-Ser473-protein kinase B (PKB/AKT), p-Tyr199/Tyr458-phosphatidylinositol 3-kinase (PI3K), and p-Ser2448-mammalian target of rapamycin (mTOR), but suppressed autophagy through the inhibition of the protein levels of p-Ser552-ß-catenin, p-Ser9-glycogen synthase kinase-3ß (GSK-3ß), and Wnt3a in human ESCC cells. In addition, HA-ADT was more effective in terms of the growth inhibition of human ESCC xenograft tumor than NaHS and GYY4137. In conclusion, HA-ADT can suppress ESCC progression via apoptosis promotion and autophagy inhibition. HA-ADT might be efficacious for the treatment of cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sulfeto de Hidrogênio , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Humanos , Ácido Hialurônico/farmacologia , Sulfeto de Hidrogênio/farmacologia , Morfolinas , Compostos Organotiofosforados , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sulfetos , Serina-Treonina Quinases TOR/metabolismo , Tionas , beta Catenina
6.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770950

RESUMO

Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.


Assuntos
Doenças do Sistema Nervoso Central , Nanopartículas , Humanos , Nanomedicina , Sistemas de Liberação de Medicamentos/métodos , Encéfalo , Barreira Hematoencefálica , Doenças do Sistema Nervoso Central/tratamento farmacológico , Nanopartículas/uso terapêutico
7.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684331

RESUMO

Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Animais , Biologia , Cisteína , Sulfeto de Hidrogênio/metabolismo , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia
8.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807290

RESUMO

Hydrogen sulfide (H2S), a gaseous signaling molecule, is associated with the development of various malignancies via modulating various cellular signaling cascades. Published research has established the fact that inhibition of endogenous H2S production or exposure of H2S donors is an effective approach against cancer progression. However, the effect of pharmacological inhibition of endogenous H2S-producing enzymes (cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MPST)) on the growth of breast cancer (BC) remains unknown. In the present study, DL-propargylglycine (PAG, inhibitor of CSE), aminooxyacetic acid (AOAA, inhibitor of CBS), and L-aspartic acid (L-Asp, inhibitor of 3-MPST) were used to determine the role of endogenous H2S in the growth of BC by in vitro and in vivo experiments. An in silico study was also performed to confirm the results. Corresponding to each enzyme in separate groups, we treated BC cells (MCF-7 and MDA-MB-231) with 10 mM of PAG, AOAA, and L-Asp for 24 h. Findings reveal that the combined dose (PAG + AOAA + L-Asp) group showed exclusive inhibitory effects on BC cells' viability, proliferation, migration, and invasion compared to the control group. Further, treated cells exhibited increased apoptosis and a reduced level of phospho (p)-extracellular signal-regulated protein kinases such as p-AKT, p-PI3K, and p-mTOR. Moreover, the combined group exhibited potent inhibitory effects on the growth of BC xenograft tumors in nude mice, without obvious toxicity. The molecular docking results were consistent with the wet lab experiments and enhanced the reliability of the drugs. In conclusion, our results demonstrate that the inhibition of endogenous H2S production can significantly inhibit the growth of human breast cancer cells via the AKT/PI3K/mTOR pathway and suggest that endogenous H2S may act as a promising therapeutic target in human BC cells. Our study also empowers the rationale to design novel H2S-based anti-tumor drugs to cure BC.


Assuntos
Neoplasias da Mama , Sulfeto de Hidrogênio , Animais , Neoplasias da Mama/tratamento farmacológico , Cistationina , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR
9.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558139

RESUMO

Lung cancer is one of the 10 most common cancers in the world, which seriously affects the normal life and health of patients. According to the investigation report, the 3-year survival rate of patients with lung cancer is less than 20%. Heredity, the environment, and long-term smoking or secondhand smoke greatly promote the development and progress of the disease. The mechanisms of action of the occurrence and development of lung cancer have not been fully clarified. As a new type of gas signal molecule, hydrogen sulfide (H2S) has received great attention for its physiological and pathological roles in mammalian cells. It has been found that H2S is widely involved in the regulation of the respiratory system and digestive system, and plays an important role in the occurrence and development of lung cancer. H2S has the characteristics of dissolving in water and passing through the cell membrane, and is widely expressed in body tissues, which determines the possibility of its participation in the occurrence of lung cancer. Both endogenous and exogenous H2S may be involved in the inhibition of lung cancer cells by regulating mitochondrial energy metabolism, mitochondrial DNA integrity, and phosphoinositide 3-kinase/protein kinase B co-pathway hypoxia-inducible factor-1α (HIF-1α). This article reviews and discusses the molecular mechanism of H2S in the development of lung cancer, and provides novel insights for the prevention and targeted therapy of lung cancer.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Pulmonares , Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
10.
J Cell Physiol ; 236(3): 1658-1676, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32841373

RESUMO

The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.


Assuntos
Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Carcinogênese/patologia , Humanos , Neoplasias/patologia , Mapas de Interação de Proteínas
11.
J Appl Microbiol ; 131(5): 2131-2147, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33570819

RESUMO

Obesity is considered as a risk factor for chronic health diseases such as heart diseases, cancer and diabetes 2. Reduced physical activities, lifestyle, poor nutritional diet and genetics are among the risk factors associated with the development of obesity. In recent years, several studies have explored the link between the gut microbiome and the progression of diseases including obesity, with the shift in microbiome abundance and composition being the main focus. The alteration of gut microbiome composition affects both nutrients metabolism and specific gene expressions, thereby disturbing body physiology. Specifically, the abundance of fibre-metabolizing microbes is associated with weight loss and that of protein and fat-metabolizing bacteria with weight gain. Various internal and external factors such as genetics, maternal obesity, mode of delivery, breastfeeding, nutrition, antibiotic use and the chemical compounds present in the environment are known to interfere with the richness of the gut microbiota (GM), thus influencing weight gain/loss and ultimately the development of obesity. However, the effectiveness of each factor in potentiating the shift in microbes' abundance to result in significant changes that can lead to obesity is not yet clear. In this review, we will highlight the factors involved in shaping GM, their influence on obesity and possible interventions. Understanding the influence of these factors on the diversity of the GM and how to improve their effectiveness on disease conditions could be keys in the treatment of metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Bactérias , Fibras na Dieta , Feminino , Humanos , Obesidade , Gravidez , Aumento de Peso
12.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672103

RESUMO

Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.


Assuntos
Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Sulfeto de Hidrogênio/administração & dosagem , Sulfeto de Hidrogênio/metabolismo , Administração por Inalação , Animais , Doenças Cardiovasculares/metabolismo , Movimento Celular , Humanos , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo/fisiologia
13.
Int J Med Sci ; 17(12): 1803-1810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714083

RESUMO

Since the end of 2019, a new type of coronavirus pneumonia (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout the world. Previously, there were two outbreaks of severe coronavirus caused by different coronaviruses worldwide, namely Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This article introduced the origin, virological characteristics and epidemiological overview of SARS-CoV-2, reviewed the currently known drugs that may prevent and treat coronavirus, explained the characteristics of the new coronavirus and provided novel information for the prevention and treatment of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Amidas/farmacologia , Amidas/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Cloroquina/análogos & derivados , Cloroquina/uso terapêutico , Clorpromazina/uso terapêutico , Coronavirus/genética , Infecções por Coronavirus/genética , Ciclofilinas/antagonistas & inibidores , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Endocitose/efeitos dos fármacos , Humanos , Soros Imunes , Indutores de Interferon/uso terapêutico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pneumonia Viral/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , SARS-CoV-2 , Vacinas Virais/uso terapêutico , Tratamento Farmacológico da COVID-19
14.
BMC Nephrol ; 21(1): 173, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393187

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingolipids and produced by sphingosine kinases (SphK1 and SphK2). SphK1/S1P pathway is implicated in the progression of chronic kidney disease. However, the role of SphK1/S1P pathway in renal injury in hypertension has not been reported. This study tested the hypothesis that SphK1/S1P pathway mediates the kidney damage in DOCA-salt hypertensive mice. METHODS: Male wild type (WT) C57BL6 and SphK1 knockout (KO) mice were subjected to unilateral nephrectomy, subcutaneous implant containing 50 mg of deoxycorticosterone acetate (DOCA) and 1% NaCl drinking water for 7 weeks. At the end of experiments, blood pressure data, 24 h urine and kidney samples were collected. Renal mRNA levels of SphK1 were measured by real-time RT-PCR. Markers for fibrogenesis and immune cell infiltration in kidneys were detected using Western blot and immunohistochemistray analysis, respectively. The glomerular morphological changes were examined in kidney tissue slides stained with Periodic-Acid Schiff. Four groups were studied: wild type control (WT-C), WT-DOCA, KO-C and KO-DOCA. RESULTS: The renal SphK1 mRNA expression was significantly upregulated in WT-DOCA mice, whereas this upregulation of renal SphK1 mRNA was blocked in KO-DOCA mice. There was no difference in DOCA-salt-induced hypertension between WT and KO mice. The urinary albumin was increased in both DOCA-salt groups. However, the albuminuria was significantly lower in KO-DOCA than in WT-DOCA group. There were increases in glomerulosclerosis indices in both DOCA-salt groups, whereas the increases were also significantly lower in KO-DOCA than in WT-DOCA mice. Renal protein levels of α-smooth muscle actin were upregulated in both DOCA-salt groups, but the increase was significant lower in KO-DOCA than in WT-DOCA group. The increased staining areas of collagen detected by Sirius Red-staining in kidney tissue sections were also attenuated in KO-DOCA compared with WT-DOCA mice. In contrast, the increased infiltration of CD43+ (a T cell marker) or CD68+ (a macrophage marker) cells in DOCA-salt kidneys showed no significant difference between WT-DOCA and KO-DOCA mice. CONCLUSIONS: SphK1/S1P signaling pathway mediates kidney damage in DOCA-salt hypertensive mice independent of blood pressure and immune modulation.


Assuntos
Hipertensão/genética , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética , Esfingosina/análogos & derivados , Actinas/metabolismo , Albuminúria/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Western Blotting , Colágeno/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Fibrose , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Imuno-Histoquímica , Rim/patologia , Leucossialina/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mineralocorticoides/toxicidade , Nefrectomia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Cloreto de Sódio na Dieta/toxicidade , Esfingosina/metabolismo , Linfócitos T/metabolismo
15.
J Cell Mol Med ; 23(3): 1698-1713, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637920

RESUMO

Tumour necrosis factor-α-induced protein 8-like 2 (TIPE2) is a tumour suppressor in many types of cancer. However, the mechanism of action of TIPE2 on the growth of rectal adenocarcinoma is unknown. Our results showed that the expression levels of TIPE2 in human rectal adenocarcinoma tissues were higher than those in adjacent non-tumour tissues. Overexpression of TIPE2 reduced the proliferation, migration, and invasion of human rectal adenocarcinoma cells and down-regulation of TIPE2 showed reverse effects. TIPE2 overexpression increased apoptosis through down-regulating the expression levels of Wnt3a, phospho (p)-ß-Catenin, and p-glycogen synthase kinase-3ß in rectal adenocarcinoma cells, however, TIPE2 knockdown exhibited reverse trends. TIPE2 overexpression decreased autophagy by reducing the expression levels of p-Smad2, p-Smad3, and transforming growth factor-beta (TGF-ß) in rectal adenocarcinoma cells, however, TIPE2 knockdown showed opposite effects. Furthermore, TIPE2 overexpression reduced the growth of xenografted human rectal adenocarcinoma, whereas TIPE2 knockdown promoted the growth of rectal adenocarcinoma tumours by modulating angiogenesis. In conclusion, TIPE2 could regulate the proliferation, migration, and invasion of human rectal adenocarcinoma cells through Wnt/ß-Catenin and TGF-ß/Smad2/3 signalling pathways. TIPE2 is a potential therapeutic target for the treatment of rectal adenocarcinoma.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Retais/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Neoplasias Retais/genética , Neoplasias Retais/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Taxa de Sobrevida , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Am J Nephrol ; 50(3): 196-203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416077

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in various diseases. S1P also plays significant roles in the differentiation of fibroblasts into myofibroblasts, being implicated in fibrotic diseases. S1P is produced by the phosphorylation of sphingosine catalyzed by sphingosine kinases (SphK1 and SphK2). It remains unclear if the activation of endogenous SphK1 contributes to fibrogenesis in kidneys. The present study determined the effect of SphK1 gene knockout (KO) on fibrotic markers in kidneys. METHODS: The renal fibrosis was produced using the unilateral ureteral obstruction (UUO) model in wild-type (WT) and SphK1 gene KO mice. Renal mRNA levels of SphK1 and S1P receptors (S1PR) were measured by real-time RT-PCR. Fibrotic and immune cell markers in kidneys were measured by Western blot analysis and immunostaining, respectively. Renal morphological damage was examined by Periodic-Acid Schiff staining. RESULTS: The mRNA levels of SphK1 and S1PRs were dramatically increased in renal tissues of WT-UUO mice, whereas the increase in renal SphK1 mRNA was blocked in KO-UUO mice. Interestingly, the increased levels of fibrotic markers, collagen and α-smooth muscle actin, in kidneys were significantly attenuated in KO-UUO versus WT-UUO mice. Meanwhile, kidney damage indices were remarkably attenuated in KO-UUO mice compared with WT-UUO mice. However, increased numbers of CD43+ and CD48+ cells, markers for T cell and macrophage, respectively, showed no significant difference between -WT-UUO and KO-UUO kidneys. CONCLUSION: The activation of the SphK1-S1P pathway may contribute to tubulointerstitial fibrosis in UUO kidneys by affecting fibrotic signaling within renal cells independent of immune modulation.


Assuntos
Rim/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Obstrução Ureteral/genética , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Deleção de Genes , Sistema Imunitário , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Insuficiência Renal Crônica/patologia
17.
BMC Cancer ; 18(1): 499, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716528

RESUMO

BACKGROUND: PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in cell proliferation and tumorigenesis. However, the precise mechanism of action of PCNP in the process of tumor growth has not yet been fully elucidated. METHODS: ShRNA knockdown and overexpression of PCNP were performed in human neuroblastoma cells. Tumorigenic and metastatic effects of PCNP were examined by tumor growth, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. RESULTS: PCNP over-expression decreased the proliferation, migration, and invasion of human neuroblastoma cells and down-regulation of PCNP showed reverse effects. PCNP over-expression increased protein expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase, as well as ratios of B-cell lymphoma-2 (Bcl-2)-associated X protein/Bcl-2 and Bcl-2-associated death promoter/B-cell lymphoma-extra large in human neuroblastoma cells, however PCNP knockdown exhibited reverse trends. PCNP over-expression increased phosphorylations of extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, as well as decreased phosphorylations of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), nevertheless PCNP knockdown exhibited opposite effects. Furthermore, PCNP over-expression significantly reduced the growth of human neuroblastoma xenograft tumors by down-regulating angiogenesis, whereas PCNP knockdown markedly promoted the growth of human neuroblastoma xenograft tumors through up-regulation of angiogenesis. CONCLUSIONS: PCNP mediates the proliferation, migration, and invasion of human neuroblastoma cells through mitogen-activated protein kinase and PI3K/AKT/mTOR signaling pathways, implying that PCNP is a therapeutic target for patients with neuroblastoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética
18.
Mol Biotechnol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762838

RESUMO

PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.

19.
Cancer Gene Ther ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839892

RESUMO

Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.

20.
J Adv Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876192

RESUMO

BACKGROUND: Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW: This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW: NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA