Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(24): 245706, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30840943

RESUMO

Two dimensional (2D) hexagonal boron nitride (h-BN) has attracted extensive attention due to its high thermal and chemical stability, excellent dielectric characteristic, and unique optical properties. However, the chemical vapor deposition synthesis of 2D h-BN is not fully explored, such as morphology regulation and size control. Here we demonstrate the growth of 2D h-BN single domains on Cu/Ni alloy via atmospheric chemical vapor deposition (APCVD). We discover that the shape of the as-grown h-BN single domains can be controlled from triangles, hexagons, to circles by adjusting the Ni content of the Cu/Ni substrates. Moreover, we find out that increasing the nickel content can suppress the nucleation density while the average domain size is accordingly improved. The grown single-crystalline h-BN demonstrates ultralow dark current about 0.9 pA and outstanding ultraviolet response with the responsivity up to 5.45 mAW-1. The response time are 376 and 198 ms. Our work sheds light on the controllable synthesis of 2D h-BN and promotes its applications in high ultraviolet detection.

2.
ACS Nano ; 16(3): 3664-3673, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35166113

RESUMO

We propose a universal strategy to 3D printing the graphene oxide (GO) complex structure with GO highly aligned and densely compacted, by the combination of direct ink writing and constrained drying. The constraints not only allow the generation of a huge capillary force accompanied by water evaporation at nanoscale, which induces the high compaction and alignment of GO, but also limit the shrinkage of the extruded filaments only along the wall thickness direction, therefore, successfully maintaining the uniformity of the structure at macroscale. We discover that the shrinkage stress gradually increased during the drying process, with the maximum exceeding ∼0.74 MPa, significantly higher than other colloidal systems. Interestingly, because of the convergence between plates with different orientations of the constraints, a gradient of porosity naturally formed across the thickness direction at the corner. This allows us to 3D print humidity sensitive GO based soft robotics.

3.
Sci Rep ; 8(1): 10803, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018372

RESUMO

Dry-spinning method is extensively employed in fiber industry, comparing to the counter-part of wet-spinning process, it has advantages of environmentally friendly, high yield rate and no need for purification. Here, we report the synthesis of graphene oxide (GO) fibers via dry spinning GO inks with extremely high concentrations. The proper rheology properties of such GO inks allow us to dry spin GO fiber directly. Various dry spinning conditions are investigated, and the relationship between mechanical performance and micro-structure of the obtained GO fiber are established. We found that the existence of larger GO liquid crystal domains does not necessarily result to higher mechanical properties, and it is because those large GO liquid crystal domains evolve into thick GO films during drying process and thus prevent the intimate compaction of the whole GOF and leave behind gaps. This is detrimental for the mechanical properties, and thus the dry spin GOF are much weaker than that of wet spin ones. Importantly, Barus effects, that generally arise during the melt spinning of polymers, were not observed, indicating that caution must be taken when classical polymer rheology theories are applied to investigate the dynamic behaviors of GO solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA