Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Biomacromolecules ; 23(7): 3017-3030, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35737940

RESUMO

Crosslinked, degradable, and cell-adhesive hydrogel microfibers were synthesized via interfacial polymerization employing tetrazine ligation, an exceptionally fast bioorthogonal reaction between strained trans-cyclooctene (TCO) and s-tetrazine (Tz). A hydrophobic trisTCO crosslinker and homo-difunctional poly(ethylene glycol) (PEG)-based macromers with the tetrazine group conjugated to PEG via a stable carbamate (PEG-bisTz1) bond or a labile hydrazone (PEG-bisTz2) linkage were synthesized. After laying an ethyl acetate solution of trisTCO over an aqueous solution of bisTz macromers, mechanically robust microfibers were continuously pulled from the oil-water interface. The resultant microfibers exhibited comparable mechanical and thermal properties but different aqueous stability. Combining PEG-bisTz2 and PEG-bisTz3 with a dangling arginine-glycine-aspartic acid (RGD) peptide in the aqueous phase yielded degradable fibers that supported the attachment and growth of primary vocal fold fibroblasts. The degradable and cell-adhesive hydrogel microfibers are expected to find utility in a wide array of tissue engineering applications.


Assuntos
Compostos Heterocíclicos , Hidrogéis , Fibroblastos , Hidrogéis/química , Polietilenoglicóis/química , Polimerização , Engenharia Tecidual
2.
J Am Chem Soc ; 143(28): 10793-10803, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250803

RESUMO

Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Rodaminas/química , Silício/química , Tetrazóis/síntese química , Animais , Catálise , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Tetrazóis/química , Células Tumorais Cultivadas
3.
Chemistry ; 26(21): 4690-4694, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32030822

RESUMO

Bioorthogonal reactions have been widely used in the biomedical field. 18 F-TCO/Tetrazine ligation is the most reactive radiolabelled inverse electron demand Diels-Alder reaction, but its application had been limited due to modest contrast ratios of the resulting conjugates. Herein, we describe the use of hydrophilic tetrazines to improve tumor-to-background contrast of neurotensin receptor targeted PET agents. PET agents were constructed using a rapid Diels-Alder reaction of the radiolabeled trans-cyclooctene (18 F-sTCO) with neurotensin (NT) conjugates of a 3,6-diaryltetrazine, 3-methyl-6-aryltetrazine, and a derivative of 3,6-di(2-hydroxyethyl)tetrazine. Although cell binding assays demonstrated all agents have comparable binding affinity, the conjugate derived from 3,6-di(2-hydroxyethyl)tetrazine demonstrated the highest tumor to muscle contrast, followed by conjugates of the 3-methyl-6-aryltetrazine and 3,6-diaryltetrazine.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma/diagnóstico por imagem , Radioisótopos de Flúor/química , Compostos Heterocíclicos/química , Tomografia por Emissão de Pósitrons/métodos , Carcinoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Reação de Cicloadição/métodos , Humanos
4.
Biomacromolecules ; 19(5): 1498-1507, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29554423

RESUMO

The sequence and helical content of two alanine-rich peptides (AQK18 and GpAQK18, Gp: l-propargylglycine) and their conjugates with poly(ethylene glycol) (PEG) have been investigated by multidimensional mass spectrometry (MS), encompassing electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) interfaced with tandem mass spectrometry (MS2) fragmentation and shape-sensitive separation via ion mobility mass spectrometry (IM-MS). The composition, sequence, and molecular weight distribution of the peptides and bioconjugates were identified by MS and MS2 experiments, which also confirmed the attachment of PEG at the C-terminus of the peptides. ESI coupled with IM-MS revealed the existence of random coil and α-helical conformers for the peptides in the gas phase. More importantly, the proportion of the helical conformation increased substantially after PEG attachment, suggesting that conjugation adds stability to this conformer. The conformational assemblies detected in the gas phase were largely formed in solution, as corroborated by independent circular dichroism (CD) experiments. The collision cross sections (rotationally averaged forward moving areas) of the random coil and helical conformers of the peptides and their PEG conjugates were simulated for comparison with the experimental values deduced by IM-MS in order to confirm the identity of the observed architectures and understand the stabilizing effect of the polymer chain. C-terminal PEGylation is shown to increase the positive charge density and to solvate intramolecular positive charges at the conjugation site, thereby enhancing the stability of α-helices, preserving their conformation and increasing helical propensity.


Assuntos
Nanoconjugados/química , Oligopeptídeos/química , Polietilenoglicóis/química , Dicroísmo Circular , Espectrometria de Massas/métodos , Conformação Proteica em alfa-Hélice
5.
J Am Chem Soc ; 138(18): 5978-83, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27078610

RESUMO

Rapid bioorthogonal reactivity can be induced by controllable, catalytic stimuli using air as the oxidant. Methylene blue (4 µM) irradiated with red light (660 nm) catalyzes the rapid oxidation of a dihydrotetrazine to a tetrazine thereby turning on reactivity toward trans-cyclooctene dienophiles. Alternately, the aerial oxidation of dihydrotetrazines can be efficiently catalyzed by nanomolar levels of horseradish peroxidase under peroxide-free conditions. Selection of dihydrotetrazine/tetrazine pairs of sufficient kinetic stability in aerobic aqueous solutions is key to the success of these approaches. In this work, polymer fibers carrying latent dihydrotetrazines were catalytically activated and covalently modified by trans-cyclooctene conjugates of small molecules, peptides, and proteins. In addition to visualization with fluorophores, fibers conjugated to a cell adhesive peptide exhibited a dramatically increased ability to mediate contact guidance of cells.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Adesivos , Catálise , Enzimas/química , Peroxidase do Rábano Silvestre/química , Cinética , Luz , Azul de Metileno/química , Oxirredução , Processos Fotoquímicos , Espectrofotometria Ultravioleta
6.
Biomacromolecules ; 17(11): 3750-3760, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723964

RESUMO

Toward the goal of establishing physiologically relevant in vitro tumor models, we synthesized and characterized a biomimetic hydrogel using thiolated hyaluronic acid (HA-SH) and an acrylated copolymer carrying multiple copies of cell adhesive peptide (PolyRGD-AC). PolyRGD-AC was derived from a random copolymer of tert-butyl methacrylate (tBMA) and oligomeric (ethylene glycol) methacrylate (OEGMA), synthesized via atom transfer radical polymerization (ATRP). Acid hydrolysis of tert-butyl moieties revealed the carboxylates, through which acrylate groups were installed. Partial modification of the acrylate groups with a cysteine-containing RGD peptide generated PolyRGD-AC. When PolyRGD-AC was mixed with HA-SH under physiological conditions, a macroscopic hydrogel with an average elastic modulus of 630 Pa was produced. LNCaP prostate cancer cells encapsulated in HA-PolyRGD gels as dispersed single cells formed multicellular tumoroids by day 4 and reached an average diameter of ∼95 µm by day 28. Cells in these structures were viable, formed cell-cell contacts through E-cadherin (E-CAD), and displayed cortical organization of F-actin. Compared with the control gels prepared using PolyRDG, multivalent presentation of the RGD signal in the HA matrix increased cellular metabolism, promoted the development of larger tumoroids, and enhanced the expression of E-CAD and integrins. Overall, hydrogels with multivalently immobilized RGD are a promising 3D culture platform for dissecting principles of tumorigenesis and for screening anticancer drugs.


Assuntos
Carcinogênese/efeitos dos fármacos , Hidrogéis/química , Peptídeos/química , Polímeros/química , Biomimética , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/síntese química , Hidrogéis/farmacologia , Masculino , Metacrilatos/síntese química , Metacrilatos/química , Metacrilatos/farmacologia , Peptídeos/síntese química , Peptídeos/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/patologia
7.
Mol Pharm ; 12(6): 2101-11, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25898125

RESUMO

Nanomedicine has advanced to clinical trials for adult cancer therapy. However, the field is still in its infancy for treatment of childhood malignancies such as acute lymphoblastic leukemia (ALL). Nanotherapy offers multiple advantages over conventional therapy. It facilitates targeted delivery and enables controlled release of drugs to reduce treatment-related side effects. Here, we demonstrate that doxorubicin (DOX) encapsulated in polymeric nanoparticles (NPs) modified with targeting ligands against CD19 (CD19-DOX-NPs) can be delivered in a CD19-specific manner to leukemic cells. The CD19-DOX-NPs were internalized via receptor-mediated endocytosis and imparted cytotoxicity in a CD19-dependent manner in CD19-positive ALL cells. Leukemic mice treated with CD19-DOX-NPs survived significantly longer and manifested a higher degree of agility, indicating reduced apparent systemic toxicity during treatment compared to mice treated with free DOX. We suggest that targeted delivery of drugs used in childhood cancer treatment should improve therapeutic efficacy and reduce treatment-related side effects in children.


Assuntos
Antígenos CD19/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C
8.
Soft Matter ; 11(9): 1839-50, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25611563

RESUMO

Polymer-peptide conjugates were produced via the copper-catalyzed azide-alkyne cycloaddition of poly(tert-butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and addition of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA's ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates.


Assuntos
Acrilatos/química , Elastina/química , Biomimética , Polimerização , Termodinâmica
9.
Analyst ; 140(22): 7550-64, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26460278

RESUMO

A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are increasingly used in biomedical and pharmaceutical applications.


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Oligopeptídeos/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Triazóis/química
10.
Mol Pharm ; 10(6): 2199-210, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23194373

RESUMO

Nanotechnology approaches have tremendous potential for enhancing treatment efficacy with lower doses of chemotherapeutics. Nanoparticle (NP)-based drug delivery approaches are poorly developed for childhood leukemia. Dexamethasone (Dex) is one of the most common chemotherapeutic drugs used in the treatment of childhood leukemia. In this study, we encapsulated Dex in polymeric NPs and validated their antileukemic potential in vitro and in vivo. NPs with an average diameter of 110 nm were assembled from an amphiphilic block copolymer of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals (ECT2). The blank NPs were nontoxic to cultured cells in vitro and to mice in vivo. Encapsulation of Dex into the NPs (Dex-NP) did not compromise the bioactivity of the drug. Dex-NPs induced glucocorticoid phosphorylation and showed cytotoxicity similar to the free Dex in leukemic cells. Studies using NPs labeled with fluorescent dyes revealed leukemic cell surface binding and internalization. In vivo biodistribution studies showed NP accumulation in the liver and spleen with subsequent clearance of the particles with time. In a preclinical model of leukemia, Dex-NPs significantly improved the quality of life and survival of mice as compared to the free drug. To our knowledge, this is the first report showing the efficacy of polymeric NPs to deliver Dex to potentially treat childhood leukemia and reveals that low doses of Dex should be sufficient for inducing cell death and improving survival.


Assuntos
Dexametasona/química , Dexametasona/uso terapêutico , Leucemia/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Poliésteres/química , Polietilenoglicóis/química , Baço/metabolismo
11.
Biomacromolecules ; 14(11): 3808-19, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24093583

RESUMO

Synthetic hydrogels containing covalently integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically cross-linkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic cross-linkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing wounds to initiate tissue repair.


Assuntos
Dexametasona/química , Ácido Hialurônico/química , Hidrogéis/química , Inflamação/tratamento farmacológico , Animais , Linhagem Celular , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Dexametasona/farmacologia , Hidrogéis/síntese química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Micelas , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
12.
Soft Matter ; 9(3): 665-673, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23505396

RESUMO

Natural resilin, the rubber-like protein that exists in specialized compartments of most arthropods, possesses excellent mechanical properties such as low stiffness, high resilience and effective energy storage. Recombinantly-engineered resilin-like polypeptides (RLPs) that possess the favorable attributes of native resilin would be attractive candidates for the modular design of biomaterials for engineering mechanically active tissues. Based on our previous success in creating a novel RLP-based hydrogel and demonstrating useful mechanical and cell-adhesive properties, we have produced a suite of new RLP-based constructs, each equipped with 12 repeats of the putative resilin consensus sequence and a single, distinct biologically active domain. This approach allows independent control over the concentrations of cell-binding, MMP-sensitive, and polysaccharide-sequestration domains in hydrogels comprising mixtures of the various RLPs. The high purity, molecular weight and correct compositions of each new polypeptide have been confirmed via high performance liquid chromatography (HPLC), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and amino acid analysis. These RLP-based polypeptides exhibit largely random-coil conformation, both in solution and in the cross-linked hydrogels, as indicated by circular dichroic and infrared spectroscopic analyses. Hydrogels of various compositions, with a range of elastic moduli (1kPa to 25kPa) can be produced from these polypeptides, and the activity of the cell-binding and matrix metalloproteinase (MMP) sensitive domains was confirmed. Tris(hydroxymethyl phosphine) cross-linked RLP hydrogels were able to maintain their mechanical integrity as well as the viability of encapsulated primary human mesenchymal stem cells (MSCs). These results validate the promising properties of these RLP-based elastomeric biomaterials.

13.
Soft Matter ; 9(5): 1589-1599, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23976897

RESUMO

Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through concerted H-bonds and hydrophobic interactions.

14.
Adv Nanobiomed Res ; 3(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38645834

RESUMO

Successful engineering of functional salivary glands necessitates the creation of cell-instructive environments for ex vivo expansion and lineage specification of primary human salivary gland stem cells (hS/PCs). Herein, basement membrane mimetic hydrogels were prepared using hyaluronic acid, cell adhesive peptides, and hyperbranched polyglycerol (HPG), with or without sulfate groups, to produce "hyperGel+" or "hyperGel", respectively. Differential scanning fluorescence experiments confirmed the ability of the sulphated HPG precursor to stabilize fibroblast growth factor 10. The hydrogels were nanoporous, cytocompatibile and cell-permissive, enabling the development of multicellular hS/PC spheroids in 14 days. Incorporation of sulfated HPG species in the hydrogel enhanced cell proliferation. Culture of hS/PCs in hyperGel+ in the presence of a Rho kinase inhibitor, Y-27632 (Y-27), led to the development of spheroids with a central lumen, increased the expression of acinar marker aquaporin-3 at the transcript level (AQP3), and decreased the expression of ductal marker keratin 7 at both the transcript (KRT7) and the protein levels (K7). Reduced expression of transforming growth factor beta (TGF-ß) targets SMAD2/3 was also observed in Y27-treated cultures, suggesting attenuation of TGF-ß signaling. Thus, hyperGel+ cooperates with the ROCK inhibitor to promote the development of lumened spheroids with enhanced expression of acinar markers.

15.
Lab Chip ; 23(18): 4067-4078, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610268

RESUMO

Recent advances recognize that the viscoelastic properties of epithelial structures play important roles in biology and disease modeling. However, accessing the viscoelastic properties of multicellular structures in mechanistic or drug-screening applications has challenges in repeatability, accuracy, and practical implementation. Here, we present a microfluidic platform that leverages elastohydrodynamic phenomena, sensed by strain sensors made from graphene decorated with palladium nanoislands, to measure the viscoelasticity of cellular monolayers in situ, without using chemical labels or specialized equipment. We demonstrate platform utility with two systems: cell dissociation following trypsinization, where viscoelastic properties change over minutes, and epithelial-to-mesenchymal transition, where changes occur over days. These cellular events could only be resolved with our platform's higher resolution: viscoelastic relaxation time constants of λ = 14.5 ± 0.4 s-1 for intact epithelial monolayers, compared to λ = 13.4 ± 15.0 s-1 in other platforms, which represents a 30-fold improvement. By rapidly assessing combined contributions from cell stiffness and intercellular interactions, we anticipate that the platform will hasten the translation of new mechanical biomarkers.


Assuntos
Grafite , Transição Epitelial-Mesenquimal , Avaliação Pré-Clínica de Medicamentos , Microfluídica
16.
ACS Appl Mater Interfaces ; 15(27): 32148-32161, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364369

RESUMO

Synthetic matrices that are cytocompatible, cell adhesive, and cell responsive are needed for the engineering of implantable, secretory salivary gland constructs to treat radiation induced xerostomia or dry mouth. Here, taking advantage of the bioorthogonality of the Michael-type addition reaction, hydrogels with comparable stiffness but varying degrees of degradability (100% degradable, 100DEG; 50% degradable, 50DEG; and nondegradable, 0DEG) by cell-secreted matrix metalloproteases (MMPs) were synthesized using thiolated HA (HA-SH), maleimide (MI)-conjugated integrin-binding peptide (RGD-MI), and MI-functionalized peptide cross-linkers that are protease degradable (GIW-bisMI) or nondegradable (GIQ-bisMI). Organized multicellular structures developed readily in all hydrogels from dispersed primary human salivary gland stem cells (hS/PCs). As the matrix became progressively degradable, cells proliferated more readily, and the multicellular structures became larger, less spherical, and more lobular. Immunocytochemical analysis showed positive staining for stem/progenitor cell markers CD44 and keratin 5 (K5) in all three types of cultures and positive staining for the acinar marker α-amylase under 50DEG and 100DEG conditions. Quantitatively at the mRNA level, the expression levels of key stem/progenitor markers KIT, KRT5, and ETV4/5 were significantly increased in the degradable gels as compared to the nondegradable counterparts. Western blot analyses revealed that imparting matrix degradation led to >3.8-fold increase in KIT expression by day 15. The MMP-degradable hydrogels also promoted the development of a secretary phenotype, as evidenced by the upregulation of acinar markers α-amylase (AMY), aquaporin-5 (AQP5), and sodium-potassium chloride cotransporter 1 (SLC12A2). Collectively, we show that cell-mediated matrix remodeling is necessary for the development of regenerative pro-acinar progenitor cells from hS/PCs.


Assuntos
Glândulas Salivares , Células-Tronco , Humanos , Células Cultivadas , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Hidrogéis/química , Compostos de Sulfidrila/química , Sobrevivência Celular , Biomarcadores
17.
Biomaterials ; 299: 122180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267701

RESUMO

Synthetic matrices with dynamic presentation of cell guidance cues are needed for the development of physiologically relevant in vitro tumor models. Towards the goal of mimicking prostate cancer progression and metastasis, we engineered a tunable hyaluronic acid-based hydrogel platform with protease degradable and cell adhesive properties employing bioorthogonal tetrazine ligation with strained alkenes. The synthetic matrix was first fabricated via a slow tetrazine-norbornene reaction, then temporally modified via a diffusion-controlled method using trans-cyclooctene, a fierce dienophile that reacts with tetrazine with an unusually fast rate. The encapsulated DU145 prostate cancer single cells spontaneously formed multicellular tumoroids after 7 days of culture. In situ modification of the synthetic matrix via covalent tagging of cell adhesive RGD peptide induced tumoroid decompaction and the development of cellular protrusions. RGD tagging did not compromise the overall cell viability, nor did it induce cell apoptosis. In response to increased matrix adhesiveness, DU145 cells dynamically loosen cell-cell adhesion and strengthen cell-matrix interactions to promote an invasive phenotype. Characterization of the 3D cultures by immunocytochemistry and gene expression analyses demonstrated that cells invaded into the matrix via a mesenchymal like migration, with upregulation of major mesenchymal markers, and down regulation of epithelial markers. The tumoroids formed cortactin positive invadopodia like structures, indicating active matrix remodeling. Overall, the engineered tumor model can be utilized to identify potential molecular targets and test pharmacological inhibitors, thereby accelerating the design of innovative strategies for cancer therapeutics.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Adesividade , Neoplasias da Próstata/patologia , Próstata , Transição Epitelial-Mesenquimal , Comunicação Celular , Hidrogéis/química , Matriz Extracelular/metabolismo
18.
Adv Healthc Mater ; 12(29): e2301701, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530909

RESUMO

Toward the goal of establishing an engineered model of the vocal fold lamina propria (LP), mesenchymal stem cells (MSCs) are encapsulated in hyaluronic acid (HA)-based hydrogels employing tetrazine ligation with strained alkenes. To mimic matrix stiffening during LP maturation, diffusion-controlled interfacial bioorthogonal crosslinking is carried out on the soft cellular construct using HA modified with a ferocious dienophile, trans-cyclooctene (TCO). Cultures are maintained in MSC growth media for 14 days to afford a model of a newborn LP that is homogeneously soft (nLP), a homogeneously stiffened construct zero (sLP0) or 7 days (sLP7) post cell encapsulation, and a mature LP model (mLP) with a stiff top layer and a soft bottom layer. Installation of additional HA crosslinks restricts cell spreading. Compared to the nLP controls, sLP7 conditions upregulate the expression of fibrous matrix proteins (Col I, DCN, and FN EDA), classic fibroblastic markers (TNC, FAP, and FSP1), and matrix remodeling enzymes (MMP2, TIMP1, and HAS3). Day 7 stiffening also upregulates the catabolic activities, enhances ECM turnover, and promotes YAP expression. Overall, in situ delayed matrix stiffening promotes a fibroblast transition from MSCs and enhances YAP-regulated mechanosensing.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Recém-Nascido , Hidrogéis/metabolismo , Prega Vocal/metabolismo , Fibroblastos , Ácido Hialurônico/metabolismo
19.
Biomacromolecules ; 13(6): 1774-86, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22533503

RESUMO

We have synthesized elastin mimetic hybrid polymers (EMHPs) via the step-growth polymerization of azide-functionalized poly(ethylene glycol) (PEG) and alkyne-terminated peptide (AKAAAKA)(2) (AK2) that is abundant in the cross-linking domains of the natural elastin. The modular nature of our synthesis allows facile adjustment of the peptide sequence to modulate the structural and biological properties of EMHPs. Therefore, EMHPs containing cell-binding domains (CBDs) were constructed from α,ω-azido-PEG and two types of alkyne-terminated AK2 peptides with sequences of DGRGX(AKAAAKA)(2)X (AK2-CBD1) and X(AKAAAKA)(2)XGGRGDSPG (AK2-CBD2, X = propargylglycine) via a step-growth, click coupling reaction. The resultant hybrid copolymers contain an estimated five to seven repeats of PEG and AK2 peptides. The secondary structure of EMHPs is sensitive to the specific sequence of the peptidic building blocks, with CBD-containing EMHPs exhibiting a significant enhancement in the α-helical content as compared with the peptide alone. Elastomeric hydrogels formed by covalent cross-linking of the EMHPs had a compressive modulus of 1.06 ± 0.1 MPa. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h and to spread and develop F-actin filaments 24 h postseeding. NHDF proliferation was only observed on hydrogels containing RGDSP domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. These cell-instructive, hybrid polymers are promising candidates as elastomeric scaffolds for tissue engineering.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Elastina/síntese química , Mimetismo Molecular , Reagentes de Ligações Cruzadas/química , Elastina/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polimerização , Propriedades de Superfície
20.
Soft Matter ; 8(12): 3280-3294, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22419946

RESUMO

Hyaluronic acid (HA) is one of nature's most versatile and fascinating macromolecules. Being an essential component of the natural extracellular matrix (ECM), HA plays an important role in a variety of biological processes. Inherently biocompatible, biodegradable and non-immunogenic, HA is an attractive starting material for the construction of hydrogels with desired morphology, stiffness and bioactivity. While the interconnected network extends to the macroscopic level in HA bulk gels, HA hydrogel particles (HGPs, microgels or nanogels) confine the network to microscopic dimensions. Taking advantage of various scaffold fabrication techniques, HA hydrogels with complex architecture, unique anisotropy, tunable viscoelasticity and desired biologic outcomes have been synthesized and characterized. Physical entrapment and covalent integration of hydrogel particles in a secondary HA network give rise to hybrid networks that are hierarchically structured and mechanically robust, capable of mediating cellular activities through the spatial and temporal presentation of biological cues. This review highlights recent efforts in converting a naturally occurring polysaccharide to drug releasing hydrogel particles, and finally, complex and instructive macroscopic networks. HA-based hydrogels are promising materials for tissue repair and regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA