Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(9): 3455-3459, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31808988

RESUMO

The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single-crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8-rings), AEL (10-rings), AFI (12-rings), and -CLO (20-rings) topologies, ranging from small to extra-large pores, were synthesized. These materials show exceptional properties, including small crystallites (30-150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time-dependent study revealed a non-classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.

2.
J Am Chem Soc ; 141(33): 13134-13142, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31357854

RESUMO

Discovery of novel two-dimensional (2D) materials is of fundamental importance but remains challenging. In this work, we design a simple and facile bottom-up approach to fabricate a new family of 2D acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, Nd) at room temperature and atmosphere pressure, for the first time. Various characterization techniques confirm that as-synthesized F-Ln exhibit an ultrathin morphology with thickness up to 1.45 nm and lateral dimensions up to several hundred nanometers. Microstructure analysis demonstrates that F-Ln are a series of defect-rich 2D nanomaterials, which consist of nanocrystals with sub-10 nm domains. Structure characterization of F-Ce, a typical example, infers that BN-like F-Ce one-atom-layers sandwiched by intercalated acetate anions stack alternately along [001] direction to form nanocrystal building blocks of F-Ce. The study of growth mechanism suggests that three procedures are involved in the formation of F-Ce: hydrolysis reaction of cerium(III) acetate, structure transformation induced by fluorine ions, and assembly process guided by acetate anions. The as-prepared nanosheets show excellent stability with respect to environment stimuli such as air, heat, solvent, and high-energy electron beam. This study enriches the library of 2D materials and paves the way for future application of such 2D materials in areas such as catalysis, adsorption, separation, and energy storage/conversion.

3.
Nat Commun ; 15(1): 139, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167785

RESUMO

Assembly ubiquitously occurs in nature and gives birth to numerous functional biomaterials and sophisticated organisms. In this work, chiral hydrogen-bonded organic-inorganic frameworks (HOIFs) are synthesized via biomimicking the self-assembly process from amino acids to proteins. Enjoying the homohelical configurations analogous to α-helix, the HOIFs exhibit remarkable chiroptical activity including the chiral fluorescence (glum = 1.7 × 10-3) that is untouched among the previously reported hydrogen-bonded frameworks. Benefitting from the dynamic feature of hydrogen bonding, HOIFs enable enantio-discrimination of chiral aliphatic substrates with imperceivable steric discrepancy based on fluorescent change. Moreover, the disassembled HOIFs after recognition applications are capable of being facilely regenerated and self-purified via aprotic solvent-induced reassembly, leading to at least three consecutive cycles without losing the enantioselectivity. The underlying mechanism of chirality bias is decoded by the experimental isothermal titration calorimetry together with theoretic simulation.

4.
ACS Appl Mater Interfaces ; 13(42): 50258-50269, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637260

RESUMO

Lithium-sulfur (Li-S) batteries have been widely considered as the next-generation energy storage system but hindered by the soluble polysulfide intermediate-induced shuttle effect. Doping heteroatoms was confirmed to enhance the affinity of polysulfide and the carbon host, release the shuttle effect, and improve the battery performance. To enhance the Lewis acidity and reinforce the interaction between polysulfide and the carbon skeleton, a novel covalent triazine framework (CTFO) was designed and fabricated by copolymerizing 2,4,6-triphenoxy-s-triazine and 2,4,6-trichloro-1,3,5-triazine through Friedel-Crafts alkylation. Polymerization led to triazine substitution on the para-position of the phenoxy groups of 2,4,6-triphenoxy-triazine and produced two-dimensional three-connected honeycomb nanosheets. These nanosheets were confirmed to exhibit packing in the AB style through the intralayer π-π interaction to form a three-dimensional layered network with micropores of 0.5 nm. The practical and simulated results manifested the enhanced polysulfide capture capability due to the abundant N and O heteroatoms in CTFO. The unique porous polar network endowed CTFO with improved Li-S battery performance with high Coulombic efficiency, rate capability, and cycling stability. The S@CTFO cathode delivered an initial discharge capacity of 791 mAh g-1 at 1C and retained a residual capacity of 512 mAh g-1 after 300 charge-discharge cycles with an attenuation rate of 0.117%. The present results confirmed that multiple heteroatom doping enhances the interaction between the porous polar CTF skeleton and polysulfide intermediates to improve the Li-S battery performance.

5.
RSC Adv ; 10(59): 35873-35877, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35517094

RESUMO

In this study, organic-inorganic hybrid mesogens of silver nanoparticles (Ag NPs) and azopyridines (AzoPys) enabled by halogen bonding were prepared. Triple functions of the degree of orientation change, metal-enhanced fluorescence, and surface-enhanced Raman scattering were observed in Ag⋯Br-Br⋯AzoPy nanoparticles (12Br-Ag), which were induced by the in situ synthesis of Ag NPs in AzoPy. The bromine molecules were then linked by halogen bonding and electrostatic interaction resulting in the smectic A phase of 12Br-Ag. To demonstrate the potential of Br-Br⋯AzoPy (12Br) as a practical sensor, we used the 12Br compound to detect silver in an aqueous condition, and significant signals of the halogen-bonded complex-silver system were observed in the X-ray diffraction pattern and Raman spectra. Herein, we provide a novel perspective and design principle for the practical applications of organic-inorganic hybrid liquid crystals in environmental monitoring.

6.
Nanoscale ; 11(31): 14952-14958, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31364654

RESUMO

NaGdF4 is one of the most commonly employed phosphor host matrices for lanthanide doping and is one of the most efficient infrared-to-visible up-conversion fluorescent host materials. Although the structure, morphology and luminescence properties of NaREF4 have been sufficiently investigated, there are very few reported instances of introducing localized order/crystallinity by electron-beam (e-beam) irradiation. In this work, we studied the phase transformation of Gd2O3 from an amorphous to crystalline form via manipulation by e-beam irradiation. The amorphous Gd2O3 occurs as an impurity in the cubic-NaGdF4 nanoparticles (NPs). The structural evolutions, including the transformation from amorphous to crystalline, the recrystallization process and the formation of the graphene@NP core-shell structure, are discussed in detail. We also propose an evolution scheme, in which the e-beam manipulation of the organic-containing NPs induces a subtle structural transformation, depending in principle on the microenvironment of the NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA