Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 143: 109211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944683

RESUMO

Polyvalent antibodies can resist multiple bacterial species, and immunoglobulin Y (IgY) antibody can be economically prepared in large quantities from egg yolk; further, IgY polyvalent antibodies have application value in aquaculture. The outer membrane proteins (OMPs) PF1380 and ExbB of Pseudomonas fluorescens were expressed and purified, and the corresponding IgY antibodies were prepared. PF1380, ExbB, and the corresponding IgY antibodies could activate the innate immune responses of chicken and Carassius auratus. The passive immunization to C. auratus showed that the IgY antibodies of PF1380 and ExbB had an immune protection rate, down-regulated the expression of antioxidant-related factors (MDA, SOD, GSH-Px, and CAT) to reduce the antioxidant reaction, down-regulated the expression of inflammation-related genes (IL-6, IL-8, TNF-α, and IL-1ß) to reduce the inflammatory reaction, maintained the integrity of visceral tissue structure, and reduced apoptosis and damage of tissue cells in relation to P. fluorescens and Aeromonas hydrophila infections. Thus, the IgY antibodies of PF1380 and ExbB could be considered as passive polyvalent vaccine candidates in aquaculture.


Assuntos
Pseudomonas fluorescens , Vacinas , Animais , Proteínas de Membrana , Gema de Ovo , Antioxidantes/análise , Imunoglobulinas , Anticorpos , Inflamação , Galinhas
2.
Fish Shellfish Immunol ; 128: 101-112, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926820

RESUMO

Among aquaculture vaccines, polyvalent vaccines (for immunoprotection against multiple bacterial species) are more efficient and can better avoid bacterial resistance and antibiotic residues in fish. Here, 15 outer membrane proteins (OMPs) of Aeromonas hydrophila were cloned and purified, and mouse antisera were prepared. Passive immunization to Carassius auratus showed that four OMPs sera (OmpW, OmpAII, P5, and AHA2685) and the entire OMPs serum held effective immunoprotection against A. hydrophila infection. Furthermore, the active immunization of four OMPs to C. auratus showed that OmpW, OmpAII, P5, and AHA2685 held effective immunoprotection against A. hydrophila, and OmpW held active cross-protection against Vibrio alginolyticus. The mechanisms of these four candidate vaccines in triggering immune responses were subsequently explored. They all could activate innate immune responses in active immunization, down-regulate (p < 0.05) the inflammation-related genes expression to reduce the inflammatory reaction induced by A. hydrophila, and down-regulate (p < 0.05) antioxidant-related factors to reduce the antioxidant reaction for bacterial infection. Noteablely, the four OMPs had protective abilities on kidney and spleen tissues of C. auratus after challenged with A. hydrophila and V. alginolyticus by histopathological observation. Collectively, our results identify OmpW as a polyvalent vaccine candidate, and OmpAII, P5, and AHA2685 as vaccine candidates against A. hydrophila infection in fish.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Doenças dos Roedores , Aeromonas hydrophila , Animais , Antibacterianos , Antígenos de Bactérias , Antioxidantes , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Carpas/metabolismo , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Soros Imunes , Camundongos , Vacinas Combinadas
3.
Vaccines (Basel) ; 9(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807110

RESUMO

Escherichia coli is a major etiologic agent of cow mastitis, a condition that results in huge economic losses. There is a lack of an oral vaccine for cow mastitis. Previous studies have confirmed that the outer membrane protein A (OmpA) of E. coli is immunogenic and can be used for vaccine design. In the present study, OmpA was encapsulated into nanoparticles (NP-OmpA) for an oral vaccine for cow mastitis. Methods: OmpA was purified with Ni-NTA flow resin and encapsulated with chitosan (CS) to prepare NP-OmpA nanoparticles. The gastrointestinal tract was simulated in vitro (PBS, pH 1.2) to measure the protein release rate. The optimal preparation conditions for NP-OmpA were determined by analyzing the concentrations of OmpA and CS, magnetic mixing speed, mixing time, and the ratio of tripolyphosphate (TPP)/CS (w/w). NP-OmpA safety was assessed by function factors and histopathological examination of livers and kidneys. The immune activity of NP-OmpA was determined using qRT-PCR to assess immune-related gene expression, leukocyte phagocytosis of Staphylococcus aureus, ELISA to evaluate antiserum titer and immune recognition of E. coli, and the organ index. The immune protection function of NP-OmpA was assessed by the protection rate of NP-OmpA to E. coli in mice, qRT-PCR for inflammation-related gene expression, assay kits for antioxidant factors, and visceral injury in the histopathological sections. Results: NP-OmpA nanoparticles had a diameter of about 700 nm, loading efficiency (LE) of 79.27%, and loading capacity (LC) of 20.31%. The release rate of NP-OmpA (0~96 h) was less than 50% in vitro. The optimal preparation conditions for NP-OmpAs were OmpA protein concentration of 2 mg/mL, CS concentration of 5 mg/mL, TPP/CS (w/w) of 1:1, magnetic mixing speed of 150 r/min, and mixing time of 15 min. Histopathological sections and clinical analytes of uric acid (UA), creatinine (Cr), alanine aminotransferase (ALT), aspartate transaminase (AST), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) showed NP-OmpA did not damage mice livers or kidneys. NP-OmpA could enhance the immune-related gene expression of IFN-γ and HSP70 in the spleen, liver, and kidney and the leukocyte phagocytosis of S. aureus. The antiserum titer (1:3200) was obtained from mice immunized with NP-OmpA, which had an immune recognition effect to E. coli. The immune protection rate of NP-OmpA was 71.43% (p < 0.05) to E. coli. NP-OmpA could down-regulate the inflammation-related gene expression of TNF-a, IL-6, and IL-10 in the spleen, liver, and kidney, and the antioxidant factors MDA and SOD in the liver, and reduce injury in the liver and kidney of mice induced by E. coli. Conclusions: A novel NP-OmpA nanoparticle was encapsulated, and the optimal preparation conditions were determined. The NP-OmpA was safe and had good immune functions. They are expected to induce a response that resists infection with the major etiologic agent (E. coli) of cow mastitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA