Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Nature ; 583(7815): 282-285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32218527

RESUMO

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Assuntos
Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , Eutérios/virologia , Evolução Molecular , Genoma Viral/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Aminoácidos , Animais , Betacoronavirus/química , Betacoronavirus/classificação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genômica , Humanos , Malásia , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Recombinação Genética , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/virologia
3.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36383602

RESUMO

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Camundongos , Animais , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiologia , Receptor beta de Linfotoxina
4.
J Med Virol ; 96(5): e29640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699969

RESUMO

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologia
5.
Epidemiol Infect ; 151: e174, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37675640

RESUMO

Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.


Assuntos
Bartonella , Coinfecção , Leptospira , Animais , Bartonella/genética , China/epidemiologia , Filogenia , Roedores/microbiologia , Musaranhos/microbiologia
6.
Global Health ; 19(1): 58, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592305

RESUMO

BACKGROUND: Outbreaks of monkeypox have been ongoing in non-endemic countries since May 2022. A thorough assessment of its global zoonotic niche and potential transmission risk is lacking. METHODS: We established an integrated database on global monkeypox virus (MPXV) occurrence during 1958 - 2022. Phylogenetic analysis was performed to examine the evolution of MPXV and effective reproductive number (Rt) was estimated over time to examine the dynamic of MPXV transmissibility. The potential ecological drivers of zoonotic transmission and inter-regional transmission risks of MPXV were examined. RESULTS: As of 24 July 2022, a total of 49 432 human patients with MPXV infections have been reported in 78 countries. Based on 525 whole genome sequences, two main clades of MPXV were formed, of which Congo Basin clade has a higher transmissibility than West African clade before the 2022-monkeypox, estimated by the overall Rt (0.81 vs. 0.56), and the latter significantly increased in the recent decade. Rt of 2022-monkeypox varied from 1.14 to 4.24 among the 15 continuously epidemic countries outside Africa, with the top three as Peru (4.24, 95% CI: 2.89-6.71), Brazil (3.45, 95% CI: 1.62-7.00) and the United States (2.44, 95% CI: 1.62-3.60). The zoonotic niche of MPXV was associated with the distributions of Graphiurus lorraineus and Graphiurus crassicaudatus, the richness of Rodentia, and four ecoclimatic indicators. Besides endemic areas in Africa, more areas of South America, the Caribbean States, and Southeast and South Asia are ecologically suitable for the occurrence of MPXV once the virus has invaded. Most of Western Europe has a high-imported risk of monkeypox from Western Africa, whereas France and the United Kingdom have a potential imported risk of Congo Basin clade MPXV from Central Africa. Eleven of the top 15 countries with a high risk of MPXV importation from the main countries of 2022-monkeypox outbreaks are located at Europe with the highest risk in Italy, Ireland and Poland. CONCLUSIONS: The suitable ecological niche for MPXV is not limited to Africa, and the transmissibility of MPXV was significantly increased during the 2022-monkeypox outbreaks. The imported risk is higher in Europe, both from endemic areas and currently epidemic countries. Future surveillance and targeted intervention programs are needed in its high-risk areas informed by updated prediction.


Assuntos
Mpox , Humanos , Mpox/epidemiologia , Filogenia , Surtos de Doenças , Estudos Retrospectivos , Brasil
7.
J Clin Lab Anal ; 37(5): e24845, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36861291

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a persistent and systemic autoimmunity disease. The abnormal differentiation of Treg cells is important in pathogenesis. Despite previous studies showed that microRNAs (miRNAs, miR) are pivotal modulators of Treg cells, the effect of miRNAs on Treg cell differentiation and function is not clear. Our study wants to reveal the relationship of miR-143-3p with the differentiative ability and biofunction of Treg cells during the development of RA. METHODS: The Expressing level of miR-143-3p and cell factor generation in peripheral blood (PB) of RA sufferers were identified by ELISA or RT-qPCR. The roles of miR-143-3p in Treg cell differentiation were studied via ShRNA/lentivirus transfection. Male DBA/1 J mice were separated into control, model, control mimics, and miR-143-3p mimics groups to analyze the anti-arthritis efficacy, the differentiative ability of Treg cells, and the expression level of miR-143-3p. RESULTS: Our team discovered that the Expressing level of miR-143-3p was related to RA disease activities in a negative manner, and remarkably related to antiinflammation cell factor IL-10. In vitro, the expression of miR-143-3p in the CD4+ T cells upregulated the percentage of CD4+ CD25+ Fxop3+ cells (Tregs) and forkhead box protein 3 (Foxp3) mRNA expression. Evidently, miR-143-3p mimic intervention considerably upregulated the content of Treg cells in vivo, validly avoided CIA progression, and remarkably suppressed the inflammatory events of joints in mice. CONCLUSION: Our findings indicated that miR-143-3p could ameliorate CIA through polarizing naive CD4+ T cells into Treg cells, which may be a novel strategy to treat autoimmune diseases such as RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Masculino , Camundongos , Animais , Linfócitos T Reguladores , Artrite Experimental/genética , Artrite Experimental/terapia , Camundongos Endogâmicos DBA , MicroRNAs/metabolismo
8.
Ecotoxicol Environ Saf ; 261: 115092, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285673

RESUMO

It is significant to establish an accurate model to predict cadmium (Cd) criteria for safe wheat production. More importantly, for better evaluation of the risk of Cd pollution in high natural background areas, the soil extractable Cd criteria are needed. In the present study, the soil total Cd criteria were derived using the method of cultivars sensitivity distribution integrated with soil aging and bioavailability as affected by soil properties. Firstly, the dataset that meet the requirements was established. Dataset from thirty-five wheat cultivars planted in different soils published in literature of five bibliographic databases were screened using designated search strings. Then, the empirical soil-plant transfer model was used to normalize the bioaccumulation data. Afterwards, the soil Cd concentration for protecting 95 % (HC5) of the species was calculated from species sensitivity distribution curves, and the derived soil criteria were obtained from HC5 prediction models that based on pH. The process of derivation for soil EDTA-extractable Cd criteria was the same way as the soil total Cd criteria. Soil total Cd criteria ranged from 0.25 to 0.60 mg/kg and soil EDTA-extractable Cd criteria ranged from 0.12 to 0.30 mg/kg. Both the criteria of soil total Cd and soil EDTA-extractable Cd were further validated to be reliable using data from field experiments. The results suggested that the criteria of soil total Cd and soil EDTA-extractable Cd in the study can ensure the safety of Cd in wheat grains and thereby enable local agricultural practitioners to develop appropriate management for croplands.


Assuntos
Poluentes do Solo , Solo , Solo/química , Cádmio/análise , Triticum/química , Ácido Edético , Poluentes do Solo/análise
9.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373296

RESUMO

Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI). Ataxia telangiectasia mutated (ATM), which promotes γH2AX, was also down-regulated in DRG after peripheral nerve injury. ATM inhibitor KU55933 decreased the level of γH2AX in ND7/23 cells. The intrathecal injection of KU55933 down-regulated DRG γH2AX expression and significantly induced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. The inhibition of ATM by siRNA could also decrease the pain threshold. The inhibition of dephosphorylation of γH2AX by protein phosphatase 2A (PP2A) siRNA partially suppressed the down-regulation of γH2AX after SNI and relieved pain behavior. Further exploration of the mechanism revealed that inhibiting ATM by KU55933 up-regulated extracellular-signal regulated kinase (ERK) phosphorylation and down-regulated potassium ion channel genes, such as potassium voltage-gated channel subfamily Q member 2 (Kcnq2) and potassium voltage-gated channel subfamily D member 2 (Kcnd2) in vivo, and KU559333 enhanced sensory neuron excitability in vitro. These preliminary findings imply that the down-regulation of γH2AX may contribute to neuropathic pain.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Camundongos , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Potássio/metabolismo , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Potássio Shal/metabolismo
10.
Pharm Biol ; 61(1): 459-472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36794740

RESUMO

CONTEXT: Rheumatoid arthritis (RA) is an autoimmune disease with aberrant Th17 cell differentiation. Panax notoginseng (Burk.) F. H. Chen (Araliaceae) saponins (PNS) have an anti-inflammatory effect and can suppress Th17 cell differentiation. OBJECTIVE: To investigate mechanisms of PNS on Th17 cell differentiation in RA, and the role of pyruvate kinase M2 (PKM2). MATERIALS AND METHODS: Naive CD4+T cells were treated with IL-6, IL-23 and TGF-ß to induce Th17 cell differentiation. Apart from the Control group, other cells were treated with PNS (5, 10, 20 µg/mL). After the treatment, Th17 cell differentiation, PKM2 expression, and STAT3 phosphorylation were measured via flow cytometry, western blots, or immunofluorescence. PKM2-specific allosteric activator (Tepp-46, 50, 100, 150 µM) and inhibitor (SAICAR, 2, 4, 8 µM) were used to verify the mechanisms. A CIA mouse model was established and divided into control, model, and PNS (100 mg/kg) groups to assess an anti-arthritis effect, Th17 cell differentiation, and PKM2/STAT3 expression. RESULTS: PKM2 expression, dimerization, and nuclear accumulation were upregulated upon Th17 cell differentiation. PNS inhibited the Th17 cells, RORγt expression, IL-17A levels, PKM2 dimerization, and nuclear accumulation and Y705-STAT3 phosphorylation in Th17 cells. Using Tepp-46 (100 µM) and SAICAR (4 µM), we demonstrated that PNS (10 µg/mL) inhibited STAT3 phosphorylation and Th17 cell differentiation by suppressing nuclear PKM2 accumulation. In CIA mice, PNS attenuated CIA symptoms, reduced the number of splenic Th17 cells and nuclear PKM2/STAT3 signaling. DISCUSSION AND CONCLUSIONS: PNS inhibited Th17 cell differentiation through the inhibition of nuclear PKM2-mediated STAT3 phosphorylation. PNS may be useful for treating RA.


Assuntos
Panax notoginseng , Saponinas , Camundongos , Animais , Saponinas/farmacologia , Células Th17 , Fosforilação , Diferenciação Celular
11.
Clin Infect Dis ; 75(1): e1054-e1062, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788811

RESUMO

BACKGROUND: To combat the coronavirus disease 2019 (COVID-19) pandemic, nonpharmaceutical interventions (NPIs) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARIs). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for 8 viral pathogens (influenza virus [IFV], respiratory syncytial virus [RSV], human parainfluenza virus [HPIV], human adenovirus [HAdV], human metapneumovirus [HMPV], human coronavirus [HCoV], human bocavirus [HBoV], and human rhinovirus [HRV]) between 2012 and 2021, were analyzed to assess the changes in respiratory infections in China during the first COVID-19 pandemic year compared with pre-pandemic years. RESULTS: Test-positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17.2% for RSV to -87.6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year-round, RSV, HPIV, HCoV, HRV, and HBoV resurged and went beyond historical levels during September 2020-January 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children <18 years and in northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.


Assuntos
COVID-19 , Bocavirus Humano , Metapneumovirus , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , COVID-19/epidemiologia , Criança , Humanos , Pandemias , Vírus da Parainfluenza 1 Humana
12.
J Transl Med ; 20(1): 5, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980149

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) seriously affects the health of mothers and babies, and there are still no effective early diagnostic markers. Therefore, it is necessary to find diagnostic biomarkers for screening GDM in early pregnancy. Circular RNA (circRNA) is more stable than linear RNA, and can be encapsulated in exosomes and participate in the pathological process of various diseases, which makes it a better candidate biomarker for various diseases. In this study, we attempted to identify the exosomal circRNA biomarkers for detecting early GDM. METHODS: We performed microarray analysis to compare the plasma exosomal circRNA expression profiles of three GDM patients 48 h before and 48 h after delivery. The repeatability of the expression of circRNAs were randomly validated by RT-PCR analysis. Pearson correlation analysis was applied to evaluate the correlation between circRNAs and OGTT level. ROC curve was established to assess the diagnostic value of circRNAs for GDM at different stages. RESULTS: Plasma exosomal hsa_circRNA_0039480 and hsa_circRNA_0026497 were highly expressed in GDM patients before delivery (P < 0.05). The hsa_circRNA_0039480 expression was higher for GDM group than NGT group at different stages, and was also positively correlated with OGTT during the second trimester (P < 0.05). The expression of hsa_circRNA_0026497 was higher for GDM group during the third, and second trimesters. And there was a strong correlation between two circRNAs in GDM patients during the first-trimester (r = 0.496, P = 0.014). Hsa_circRNA_0039480 showed significant diagnostic value in the first, second, and third trimesters of pregnancy (AUC = 0.704, P = 0.005; AUC = 0.898, P < 0.001 and AUC = 0.698, P = 0.001, respectively). Notably, the combination of hsa_circRNA_0039480 and hsa_circRNA_0026497 exhibited promising discriminative effect on GDM in the first trimesters (AUC = 0.754, P < 0.001). CONCLUSION: Plasma exosomal hsa_cirRNA_0039480 is highly expressed in GDM patients at different stages and may be served as a candidate biomarker for early detection of GDM.


Assuntos
Diabetes Gestacional , RNA Circular , Biomarcadores , Estudos de Casos e Controles , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Diagnóstico Precoce , Feminino , Humanos , Gravidez , RNA Circular/genética
13.
Acta Pharmacol Sin ; 43(7): 1670-1685, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34795412

RESUMO

Neurovascular unit (NVU) is organized multi-cellular and multi-component networks that are essential for brain health and brain homeostasis maintaining. Neurovascular unit dysfunction is the central pathogenesis process of ischemic stroke. Thus integrated protection of NVU holds great therapeutic potential for ischemic stroke. Catalpol, classified into the iridoid monosaccharide glycoside, is the main active ingredient of the radix from traditional Chinese medicine, Rehmannia glutinosa Libosch, that exhibits protective effects in several brain-related diseases. In the present study, we investigated whether catalpol exerted protective effects for NVU in ischemic stroke and the underlying mechanisms. MCAO rats were administered catalpol (2.5, 5.0, 10.0 mg·kg-1·d-1, i.v.) for 14 days. We showed that catalpol treatment dose-dependently reduced the infarction volume and significantly attenuated neurological deficits score in MCAO rats. Furthermore, catalpol treatment significantly ameliorated impaired NVU in ischemic region by protecting vessel-neuron-astrocyte structures and morphology, and promoting angiogenesis and neurogenesis to replenish lost vessels and neurons. Moreover, catalpol treatment significantly increased the expression of vascular endothelial growth factor (VEGF) through up-regulating PI3K/AKT signaling, followed by increasing FAK and Paxillin and activating PI3K/AKT and MEK1/2/ERK1/2 pathways. The protective mechanisms of catalpol were confirmed in an in vitro three-dimensional NVU model subjected to oxygen-glucose deprivation. In conclusion, catalpol protects NVU in ischemic region via activation of PI3K/AKT signaling and increased VEGF production; VEGF further enhances PI3K/AKT and MEK1/2/ERK1/2 signaling, which may trigger a partly feed-forward loop to protect NVU from ischemic stroke.


Assuntos
AVC Isquêmico , Fator A de Crescimento do Endotélio Vascular , Animais , Glucosídeos Iridoides , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Immunopharmacol Immunotoxicol ; 44(6): 838-849, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35657277

RESUMO

CONTEXT: Rheumatoid arthritis (RA) is an autoimmune disease with the aberrant differentiation of T helper 17 (Th17) cells. Pyruvate kinase M2 (PKM2), a key enzyme of glycolysis, was associated with Th17 cell differentiation. AIM: To investigate the potential therapeutic effects of triptolide (TP) in collagen-induced arthritis (CIA) and Th17 cell differentiation, and elucidated the underlying mechanisms. METHODS: PKM2 expression and IL-17A production in peripheral blood of RA patients were detected by RT-qPCR or ELISA. Flow cytometry and ELISA were employed to assess the effect of Th17 cell differentiation by TP. PKM2 expression and other glycolysis-related factors were detected using RT-qPCR and Western Blot. PKM2 specific inhibitor Compound 3 K was used to verify the mechanisms. Male DBA/1J mice were divided into control, model, and TP (60 µg/kg) groups to assess the anti-arthritis effect, Th17 cell differentiation and PKM2 expression. RESULTS: PKM2 expression positively correlated with IL-17A production in RA patients. PKM2 expression was increased upon Th17 cell differentiation. Down-regulating PKM2 expression could strongly reduce Th17 cell differentiation. Molecular docking analysis predicted that TP targeted PKM2. TP treatment significantly reduced Th17 cell differentiation, PKM2 expression, pyruvate, and lactate production. In addition, compared with down-regulating PKM2 alone (Compound 3 K treatment), co-treatment with TP and Compound 3 K further significantly decreased PKM2-mediated glycolysis and Th17 cell differentiation. In CIA mice, TP repressed the PKM2-mediated glycolysis and attenuated joint inflammation. CONCLUSION: TP inhibited Th17 cell differentiation through the inhibition of PKM2-mediated glycolysis. We highlight a novel strategy for the use of TP in RA treatment.


Assuntos
Artrite Reumatoide , Interleucina-17 , Masculino , Animais , Camundongos , Camundongos Endogâmicos DBA , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Diferenciação Celular
15.
Ecotoxicol Environ Saf ; 219: 112356, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044309

RESUMO

It is significant to derive an appropriate cadmium (Cd) threshold for the rice to ensure that the Cd concentration of rice grains meets the food safety standards. In the present study, soil thresholds for Cd were derived using the method of species sensitivity distribution based on aging time, cultivars, and soil properties. Dataset from thirty-nine rice cultivars planted in different soils published in literature of five bibliographic databases were screened using designated search strings to explore their differences in Cd accumulation capacity in paddy soil. The empirical soil-plant transfer model was used to normalize the bioaccumulation data. Later, the soil Cd concentration for protecting 95% (HC5) of the cultivars was calculated using species sensitivity distribution curves fitted by the Burr III function. The soil Cd criteria derived from the added approach for risk assessment were proposed as continuous criteria based on the combination of soil pH and organic carbon in soil. Soil Cd criteria ranged from 0.34 to 1.18 mg/kg. The prediction model for HC5 was applied to field experimental data to validate its validity and applicability. The predicted Cd thresholds were less than the field experiment Cd thresholds. In conclusion, this study provided valuable and scientific bases for setting soil Cd criteria for paddy soils.


Assuntos
Cádmio/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Inocuidade dos Alimentos , Oryza/química , Medição de Risco , Solo/química
16.
Ecotoxicol Environ Saf ; 220: 112345, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34020283

RESUMO

Microplastics (MPs) and tributyltin (TBT) are both potential environmental pollutants that enter organisms through the food chain and affect bodily functions. However, the effects and mechanisms of MPs and TBT exposure (especially the co-exposure of both pollutants) on mammals remain unclear. In this study, Ф5µm MPs (5MP) was administered alone or in combination with TBT to investigate the health risk of oral exposure in mice. All three treatments induced inflammation in the liver, altered gut microbiota composition and disturbed fecal bile acids profiles. In addition to decreasing triglyceride (TG) and increasing aspartate aminotransferase (AST) and macrophage-expressed gene 1 (Mpeg1), 5MP induced hepatic cholestasis by stimulating the expression of the cholesterol hydroxylase enzymes CYP8B1 and CYP27A1, and inhibiting multidrug resistance-associated protein 2 and 3 (MRP2, MRP3), and bile-salt export pump (BSEP) to prevent bile acids for entering the blood and bile. Correspondingly, 5MP treatment decreased 7-ketolithocholic acid (7-ketoLCA) and taurocholic acid (TCA), which were positively correlated with decreased Bacteroides and Marvinbryantia and negatively correlated with increased Bifidobacterium. In addition, TBT increased interferon γ (IFNγ) and Mpeg1 levels to induce inflammation, accompanied by decreased 7-ketoLCA, tauro-alpha-muricholic acid (T-alpha-MCA) and alpha-muricholic acid (alpha-MCA) levels, which were negatively related to Coriobacteriaceae_UCG-002 and Bifidobacterium. Co-exposure to 5MP and TBT also decreased TG and induced bile acids accumulation in the liver due to inhibited BSEP, which might be attributed to the co-regulation of decreased T-alpha-MCA and Harryflintia. In conclusion, the administration of 5MP and TBT alone and in combination could cause gut microbiome dysbiosis and subsequently alter bile acids profiles, while the combined exposure of 5MP and TBT weakened the toxic effects of 5MP and TBT alone.


Assuntos
Ácidos e Sais Biliares/metabolismo , Poluentes Ambientais/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Poliestirenos/efeitos adversos , Compostos de Trialquitina/efeitos adversos , Animais , Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Microplásticos/efeitos adversos , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
17.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31907196

RESUMO

Spotted fever group rickettsia (SFGR) can cause mild to fatal illness. The early interaction between the host and rickettsia in skin is largely unknown, and the pathogenesis of severe rickettsiosis remains an important topic. A surveillance of SFGR infection by PCR of blood and skin biopsy specimens followed by sequencing and immunohistochemical (IHC) detection was performed on patients with a recent tick bite between 2013 and 2016. Humoral and cutaneous immunoprofiles were evaluated in different SFGR cases by serum cytokine and chemokine detection, skin IHC staining, and transcriptome sequencing (RNA-seq). A total of 111 SFGR cases were identified, including 79 "Candidatus Rickettsia tarasevichiae," 22 Rickettsia raoultii, 8 Rickettsia sibirica, and 2 Rickettsia heilongjiangensis cases. The sensitivity to detect SFGR in skin biopsy specimens (9/24, 37.5%) was significantly higher than that in blood samples (105/2,671, 3.9%) (P < 0.05). As early as 1 day after the tick bite, rickettsiae could be detected in the skin. R. sibirica infection was more severe than "Ca Rickettsia" and R. raoultii infections. Increased levels of serum interleukin-18 (IL-18), IP10, and monokine induced by gamma interferon (MIG) and decreased levels of IL-2 were observed in febrile patients infected with R. sibirica compared to those infected with "Ca Rickettsia." RNA-seq and IHC staining could not discriminate between SFGR-infected and uninfected tick bite skin lesions. However, the type I interferon (IFN) response was differently expressed between R. sibirica and R. raoultii infections at the cutaneous interface. It is concluded that skin biopsy specimens were more reliable for the detection of SFGR infection in human patients although the immunoprofile may be complicated by immunomodulators induced by the tick bite.


Assuntos
Fatores Imunológicos/análise , Rickettsia/crescimento & desenvolvimento , Pele/patologia , Rickettsiose do Grupo da Febre Maculosa/patologia , Picadas de Carrapatos/complicações , Biópsia , Citocinas/sangue , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Pele/imunologia , Pele/microbiologia , Rickettsiose do Grupo da Febre Maculosa/imunologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia
18.
BMC Musculoskelet Disord ; 21(1): 792, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256689

RESUMO

BACKGROUND: Vertebral augmentation is the first-line treatment for the osteoporosis vertebral compression fractures. Bone cement leakage is the most common complication of this surgery. This study aims to assess the risk factors for different types of cement leakage and provides a nomogram for predicting the cement intradiscal leakage. METHODS: We retrospectively reviewed 268 patients who underwent vertebral augmentation procedure between January 2015 and March 2019. The cement leakage risk factors were evaluated by univariate analysis. Different types of cement leakage risk factors were identified by the stepwise logistic analysis. We provided a nomogram for predicting the cement intradiscal leakage and used the concordance index to assess the prediction ability. RESULTS: A total of 295 levels of vertebrae were included, with a leakage rate of 32.5%. Univariate analysis showed delayed surgery and lower vertebral compression ratio were the independent risk factors of cement leakage. The stepwise logistic analysis revealed percutaneous vertebroplasty was a risk factor in vein cement leakage; delayed surgery, preoperative compression ratio, and upper endplate disruption were in intradiscal cement leakage; age, preoperative fracture severity, and intravertebral vacuum cleft were in perivertebral soft tissue cement leakage; no factor was in spinal canal cement leakage. The nomogram for intradiscal cement leakage had a precise prediction ability with an original concordance index of 0.75. CONCLUSIONS: Delayed surgery and more vertebral compression increase the risk of cement leakage. Different types of cement leakage have different risk factors. We provided a nomogram for precise predicting the intradiscal cement leakage.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Cimentos Ósseos/efeitos adversos , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/cirurgia , Humanos , Nomogramas , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/cirurgia , Estudos Retrospectivos , Fatores de Risco , Coluna Vertebral , Vertebroplastia/efeitos adversos
19.
Ecotoxicol Environ Saf ; 194: 110418, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151872

RESUMO

The increasing accumulation of zinc (Zn) in agricultural soils has led to the need to assess the potential risk of this element for terrestrial organisms. However, the soil ecological criteria in agricultural soil as a function of soil properties have been sparsely reported. In the present study, we derived the ecological criteria (expressed as predicted no effect concentration (PNEC)) for Zn in soils, based on ecotoxicity data for 19 terrestrial species in Chinese soils, the effect of soil properties on Zn ecotoxicity, differences in species sensitivity, and differences between laboratory and realistic field conditions. First, all ecotoxicity data of Zn for terrestrial organisms in Chinese soils were collected and filtered with given criteria to obtain reliable database. Second, the ecotoxicity data were normalized using Zn ecotoxicity predictive models to eliminate the effect of soil properties on Zn ecotoxicity, and corrected with leaching and aging factors to minimize the differences in Zn ecotoxicity under laboratory and field conditions. Then, species sensitivity distribution (SSD) curves were generated with a Burr Ⅲ function based on corrected ecotoxicity data. The concentration of Zn in soil that provides ecological safety for (100 - x)% of species (HCx), was calculated from the SSD curve and HC5 was used for estimation of PNEC. Finally, we developed the predictive models for HCx by quantifying the relationship between the Zn HCx and soil properties. Results showed that soil pH was the most crucial factor affecting Zn HCx values, with HC5 values varying from 38.3 mg/kg in an acidic soil to 263.3 mg/kg in an alkaline calcareous soil. Both the two-factor (soil pH and OC) and the three-factor (soil pH, OC and CEC) models predicted HCx values well, with determination coefficients (R2) of 0.941-0.959 and 0.978-0.982, respectively. This study provides a scientific and reliable basis for the improvement of ecological risk assessment and the establishment of soil environmental quality standards.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo , Zinco/análise , Agricultura , China , Bases de Dados Factuais , Ecotoxicologia , Modelos Teóricos , Medição de Risco , Solo/química , Solo/normas
20.
J Neurosci ; 38(49): 10535-10551, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30373770

RESUMO

G-protein-coupled receptors are considered to be cell-surface sensors of extracellular signals, thereby having a crucial role in signal transduction and being the most fruitful targets for drug discovery. G-protein-coupled receptor 151 (GPR151) was reported to be expressed specifically in the habenular area. Here we report the expression and the epigenetic regulation of GRP151 in the spinal cord after spinal nerve ligation (SNL) and the contribution of GPR151 to neuropathic pain in male mice. SNL dramatically increased GPR151 expression in spinal neurons. GPR151 mutation or spinal inhibition by shRNA alleviated SNL-induced mechanical allodynia and heat hyperalgesia. Interestingly, the CpG island in the GPR151 gene promoter region was demethylated, the expression of DNA methyltransferase 3b (DNMT3b) was decreased, and the binding of DNMT3b with GPR151 promoter was reduced after SNL. Overexpression of DNMT3b in the spinal cord decreased GPR151 expression and attenuated SNL-induced neuropathic pain. Furthermore, Krüppel-like factor 5 (KLF5), a transcriptional factor of the KLF family, was upregulated in spinal neurons, and the binding affinity of KLF5 with GPR151 promoter was increased after SNL. Inhibition of KLF5 reduced GPR151 expression and attenuated SNL-induced pain hypersensitivity. Further mRNA microarray analysis revealed that mutation of GPR151 reduced the expression of a variety of pain-related genes in response to SNL, especially mitogen-activated protein kinase (MAPK) signaling pathway-associated genes. This study reveals that GPR151, increased by DNA demethylation and the enhanced interaction with KLF5, contributes to the maintenance of neuropathic pain via increasing MAPK pathway-related gene expression.SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are targets of various clinically approved drugs. Here we report that SNL increased GPR151 expression in the spinal cord, and mutation or inhibition of GPR151 alleviated SNL-induced neuropathic pain. In addition, SNL downregulated the expression of DNMT3b, which caused demethylation of GPR151 gene promoter, facilitated the binding of transcriptional factor KLF5 with the GPR151 promoter, and further increased GPR151 expression in spinal neurons. The increased GPR151 may contribute to the pathogenesis of neuropathic pain via activating MAPK signaling and increasing pain-related gene expression. Our study reveals an epigenetic mechanism underlying GPR151 expression and suggests that targeting GPR151 may offer a new strategy for the treatment of neuropathic pain.


Assuntos
Desmetilação , Fatores de Transcrição Kruppel-Like/metabolismo , Neuralgia/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Medula Espinal/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Neuralgia/genética , Neuralgia/patologia , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/genética , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA