Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(11): 19533-19543, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221727

RESUMO

Z-scan technology was used to study the nonlinear absorption (NLA) and nonlinear refraction (NLR) of silver nanoparticles (Ag NPs) with various sizes under different laser intensities. The results demonstrate that the NLA and NLR of Ag NPs were size-dependent. Specifically, the 10 nm Ag NPs exhibit saturation absorption (SA) and insignificant NLR. The 20 and 40 nm Ag NPs show the coexistence of SA and reverse saturation absorption (RSA). SA is believed to result from ground-state plasma bleaching, whereas RSA originates from excited state absorption (ESA). The 20 nm and 40 nm Ag NPs shows increasing self-defocusing with the increase of laser intensity. It was observed that the energy relaxation of Ag NPs mainly includes two processes of electron-phonon and phonon-phonon couplings on the order of picoseconds.

2.
Opt Express ; 30(23): 41255-41263, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366607

RESUMO

The nonlinear absorption of 40 nm Ag nanoparticles (Ag NPs) was investigated using open aperture (OA) Z-scan technique at 532 nm. Experiments show that the nonlinear absorption behavior of Ag NPs is intensity dependent. Specifically, under low laser energy the Ag NPs shows saturable absorption (SA). At medium laser energy, the transformation of nonlinear absorption from SA to reverse saturable absorption (RSA) happens. While under stronger laser energy, double transformation (SA→RSA→SA) of nonlinear absorption occurs. The experimental results were analyzed theoretically using a model based on single-photon absorption and two-photon absorption saturation.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055306

RESUMO

The multi-channel high-efficiency absorber in the mid-infrared band has broad application prospects. Here, we propose an SiC-photonic crystal (PhC) heterostructure-SiC structure to realize the absorber. The absorption characteristics of the structure are studied theoretically. The results show that the structure can achieve high-efficiency multi-channel absorption in the mid-infrared range. The absorption peaks come from the coupling of the dual Tamm phonon polariton (TPhP) mode formed at the interface between the two SiC layers and the photonic crystal, and the optical Tamm state (OTS) mode formed in the PhC heterostructure. By adjusting the thickness of the air dielectric layer and the period of the PhC in the heterostructure, the mode coupling intensity can be regulated; thereby, the position and intensity of the absorption peak can be adjusted. In addition, the absorption peaks of TE and TM polarized light can be controlled by changing the incident angle. Adjusting the incident angle can also control the excitation and intensity of the epsilon-near-zero (ENZ) phonon polariton mode produced by TM polarized light. This kind of light absorber may have potential applications in sensors, filters, modulators, switches, thermal radiators, and so on.

4.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014616

RESUMO

A high absorption broadband absorber based on MXene and tungsten nanospheres in visible and near-infrared bands is proposed. The absorber has a maximum absorption of 100% and an average absorption of 95% in the wavelength range of 400-2500 nm. The theoretical mechanism and parameter adjustability of the absorber are analyzed by FDTD solutions. The results show that the structural parameters can effectively adjust the absorption performance. The good absorption performance is due to the action of the local surface plasmon resonance coupling with the gap surface plasmon resonance and Fabry-Perot resonance. The simulation results show that the absorber is insensitive to the polarization and oblique incidence angle of incident light, and that high absorption and broadband can be maintained when the oblique incidence angle is up to 60°.

5.
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34684926

RESUMO

The nonlinear refraction of silver nanoparticles (AgNPs) in n-hexane was studied by using the closed-aperture Z-scan technique with a 532 nm nanosecond laser. It was found that, the nonlinear refraction of AgNPs shows the coexistence and transformation from self-focusing to self-defocusing. Specifically, self-focusing occurs at low excitation intensity, self-defocusing occurs at high excitation intensity, and coexistence of self-focusing and self-defocusing occurs at relatively moderate excitation intensity. The experimental results were analysed and discussed in terms of third-order and fifth-order nonlinear refractive effect. Specifically, the self-focusing is caused by the positive third-order nonlinear refraction, the self-defocusing is induced by the negative fifth-order nonlinear refraction, and the transformation from the self-focusing to self-defocusing at medium excitation intensity is caused by the competition of third-order and fifth-order nonlinear refraction. Finally, the third-order refractive index and fifth-order refractive index were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA