Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(6): 219, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148370

RESUMO

The macrolides-resistant Bordetella pertussis (MR-Bp) isolates in China evolved from the ptxP1/fhaB3 allele and rapidly became predominant, suggestive of an adaptive transmission ability. This was different from the global prevalent ptxP3 strains, in which MR-Bp was rarely reported. The study aimed to determine the underlying mechanism responsible for fitness and resistance in these two strains. We identify proteomic differences between ptxP1/fhaB3 and ptxP3/fhaB1 strains using tandem mass tag (TMT)-based proteomics. We then performed in-depth bioinformatic analysis to determine differentially expressed genes (DEGs), followed by gene ontology (GO), and protein-protein interaction (PPI) network analysis. Further parallel reaction monitoring (PRM) analysis confirmed the expression of four target proteins. Finally, the crystal violet method was used to determine biofilm-forming ability. The results showed that the main significantly different proteins between the two represent isolates were related to biofilm formation. Furthermore, we have confirmed that ptxP1/fhaB3 showed hyperbiofilm formation in comparison with ptxP3/fhaB1. It is suggested that the resistance and adaptability of ptxP1/fhaB3 strains may be related to the formation of biofilm through proteomics. In a word, we determined the significantly different proteins between the ptxP1/fhaB3 and ptxP3/fhaB1 strains through whole-cell proteome, which were related to biofilm formation.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Macrolídeos/farmacologia , Proteoma , Proteômica , Antibacterianos/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39313898

RESUMO

INTRODUCTION: The macrolide-resistant Bordetella pertussis (MRBp) has appeared in Asia and has even been prevalent in China. Since the antibiotic sensitivity test is not carried out in the clinical setting, macrolide is still the first choice of antibiotic in MRBp infection. Further, the macrolide therapy for pertussis needs to be revised. Macrolide has always shown a positive effect on other macrolide-resistant bacterium infections in clinical applications. However, the mechanism of macrolide on MRBp remains unclear. OBJECTIVE: The objective of this study was to investigate the effect of virulence of MRBp under the sub-MIC erythromycin. METHODS: This study evaluated a representative isolate BP19147 (ptxP1/fhaB3-MRBp) under a series of sub-inhibitory concentrations of erythromycin. We measured the growth curve, biofilm formation, and autoaggregation assay under Stainer and Scholte (SS) broth. The relative gene expression was detected by RT-qPCR. RESULTS: The proteomics was detected by label-fee DIA. The growth ability and virulence factors of MR isolate BP19147 were inhibited by sub-MIC of erythromycin and had a concentration- dependent effect. From the proteomics results, the pertussis toxin, filamentous haemagglutinin, and pertactin did not show a statistical difference (p >0.05). Other virulence factors (including dermonecrotic toxin, Invasive Adenylate cyclase/haemolysin. etc) showed a statistical difference (p <0.05). In the KEGG enrichment, the BvgAS system, biofilm formation, and some adaptive systems were inhibited by erythromycin. CONCLUSION: The sub-MIC of erythromycin may reduce the virulence of MRBp, which will provide a theoretical basis for the rational use of erythromycin for MRBp infection and help the development of new antibiotics.

3.
J Pharm Anal ; 13(1): 1-10, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36317070

RESUMO

The strikingly rapidly mutating nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome has been a constant challenge during the coronavirus disease 2019 (COVID-19) pandemic. In this study, various techniques, including reverse transcription-quantitative polymerase chain reaction, antigen-detection rapid diagnostic tests, and high-throughput sequencing were analyzed under different scenarios and spectra for the etiological diagnosis of COVID-19 at the population scale. This study aimed to summarize the latest research progress and provide up-to-date understanding of the methodology used for the evaluation of the immunoprotection conditions against future variants of SARS-CoV-2. Our novel work reviewed the current methods for the evaluation of the immunoprotection status of a specific population (endogenous antibodies) before and after vaccine inoculation (administered with biopharmaceutical antibody products). The present knowledge of the immunoprotection status regarding the COVID-19 complications was also discussed. Knowledge on the immunoprotection status of specific populations can help guide the design of pharmaceutical antibody products, inform practice guidelines, and develop national regulations with respect to the timing of and need for extra rounds of vaccine boosters.

4.
Biomed Res Int ; 2020: 3104613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190658

RESUMO

Probiotics may offer an attractive alternative for standard antibiotic therapy to treat Clostridium difficile infections (CDI). In this study, the antibacterial mechanism in vitro of newly isolated B. amyloliquefaciens C-1 against C. difficile was investigated. The lipopeptides surfactin, iturin, and fengycin produced by C-1 strongly inhibited C. difficile growth and viability. Systematic research of the bacteriostatic mechanism showed that the C-1 lipopeptides damage the integrity of the C. difficile cell wall and cell membrane. In addition, the lipopeptide binds to C. difficile genomic DNA, leading to cell death. Genome resequencing revealed many important antimicrobial compound-encoding clusters, including six nonribosomal peptides (surfactins (srfABCD), iturins (ituABCD), fengycins (fenABCDE), bacillibactin (bmyABC), teichuronic, and bacilysin) and three polyketides (bacillaene (baeEDLMNJRS), difficidin (difABCDEFGHIJ), and macrolactin (mlnABCDEFGHI)). In addition, there were other beneficial genes, such as phospholipase and seven siderophore biosynthesis gene clusters, which may contribute synergistically to the antibacterial activity of B. amyloliquefaciens C-1. We suggest that proper application of antimicrobial peptides may be effective in C. difficile control.


Assuntos
Antibacterianos/farmacologia , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Clostridioides difficile/efeitos dos fármacos , Lipopeptídeos/farmacologia , Antibacterianos/isolamento & purificação , Morte Celular/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , DNA Bacteriano/efeitos dos fármacos , Dipeptídeos/farmacologia , Genoma Bacteriano , Lipopeptídeos/biossíntese , Lipopeptídeos/genética , Lipopeptídeos/isolamento & purificação , Família Multigênica , Oligopeptídeos , Peptídeos Cíclicos/farmacologia , Policetídeos/farmacologia , Probióticos , Metabolismo Secundário , Ácidos Urônicos/farmacologia , Sequenciamento Completo do Genoma
5.
Probiotics Antimicrob Proteins ; 12(3): 1115-1125, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31845113

RESUMO

The aim of this study was to evaluate the probiotic characteristics and safety of seven Enterococcus faecalis isolates from fecal samples of healthy Chinese infants. We evaluated the isolates' tolerance to low pH, survival in bile salts and NaCl, adhesion ability, biofilm formation, antimicrobial activity, toxin gene distribution, hemolysis, gelatinase activity, antibiotic resistance, and virulence to Galleria mellonella. All strains survived at pH 5.0, in 7.0% NaCl, and in 3% bile salt. Adhesion to Caco-2 cells was above 10%. Strain A3-1 had higher adhesion ability toward mucin, collagen, and BSA in vitro, better antibacterial activity, and the strongest biofilm production. We detected seven virulence genes with a distribution of asa1 (100%), cylA (71.4%), esp (85.7%), hyl (14.3%), gelE (85.7%), ace (42.9%), and agg (71.4%). Although all strains were γ-hemolytic, none showed gelatinase activity based on physiological activity detection. All isolates were susceptible to benzylpenicillin, ampicillin, ciprofloxacin, levofloxacin, moxifloxacin, tigecycline, nitrofurantoin, linezolid, and vancomycin; they were not susceptible to erythromycin, quinupristin/dalofopine, and clindamycin. The virulence test of G. mellonella showed that, except for strains 106-1 and 113-1, the other strains had toxicity lower than 10%. Strain A3-1 may have the greatest potential to be developed as a probiotic.


Assuntos
Enterococcus faecalis/metabolismo , Fezes/microbiologia , Probióticos , Antibacterianos/farmacologia , Células CACO-2 , China , Farmacorresistência Bacteriana , Enterococcus faecalis/efeitos dos fármacos , Humanos , Recém-Nascido , Probióticos/isolamento & purificação , Probióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA