Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(3): 1433-1440, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33006403

RESUMO

The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe-metal-organic framework (NiFe-MOFs) was conformally coated on oxygen-vacancy-rich BiVO4 (Ov-BiVO4 ) as the protective layer and cocatalyst, forming a core-shell structure with caffeic acid as bridging agent. The as-synthesized Ov-BiVO4 @NiFe-MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm-2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)-O and elevated valence state of Ni(Fe) in NiFe-MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov-BiVO4 to NiFe-MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe-MOFs layer, leading to a photoanode of enhanced photocurrent and stability.

2.
Inorg Chem ; 59(7): 4483-4492, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32174112

RESUMO

Three classical Fe-MOFs, viz., MIL-100(Fe), MIL-101(Fe), and MIL-53(Fe), were synthesized to serve as platforms for the investigation of structure-activity relationship and catalytic mechanism in the selective conversion of H2S to sulfur. The physicochemical properties of the Fe-MOFs were characterized by various techniques. It was disclosed that the desulfurization performances of Fe-MOFs with well-defined microstructures are obviously different. Among these, MIL-100(Fe) exhibits the highest catalytic performance (ca. 100% H2S conversion and 100% S selectivity at 100-180 °C) that is superior to that of commercial Fe2O3. Furthermore, the results of systematic characterization and DFT calculation reveal that the difference in catalytic performance is mainly because of discrepancy in the amount of Lewis acid sites. A plausible catalytic mechanism has been proposed for H2S selective conversion over Fe-MOFs. This work provides critical insights that are helpful for rational design of desulfurization catalysts.

3.
Anal Chem ; 91(14): 8783-8788, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251037

RESUMO

Perfluorooctanesulfonic acid (PFOS) is an emerging environmental organic pollutant that has been widely used in daily life products in the last century. Numerous studies showed that the accumulation of PFOS in human through food chain would lead to various disease. However, there is currently no report about its in situ localization in the tissue. In present study, we aimed to develop a reproductive and less-cost method to quantitatively detect and determine the spatial distribution of PFOS in mouse kidney by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) with a commercially available matrix. α-Cyano-4-hydroxycinnamic acid (CHCA) matrix was optimized for PFOS detection in MALDI-IMS analysis. Compared to other organic matrices, CHCA used in negative ion mode showed less background interference and enhanced MS signal intensity and high spatial resolution (80 µm) for PFOS analysis. The use of a CHCA matrix with an autospray system led to successful identification of the PFOS ion signals on the perfusion kidney tissue. The detection limit was at the µg/mL level, with direct visualization from a MS image. The developed method with the optimized parameters was successfully employed to obtain the PFOS spatial distribution in the kidney collected from mice after the PFOS exposure for 14 days. PFOS was mainly distributed in the kidney cortex region, which was consistent with the histological analysis results. Taken together, a rapid, economic, and efficient method was developed for PFOS detection by MALDI-IMS using a CHCA matrix. Mapping the distribution of PFOS by MALDI-IMS with a CHCA matrix provides an innovative approach for the analysis of environmental pollutants in animal or human tissues.


Assuntos
Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Rim/química , Animais , Ácidos Cumáricos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Chem Res Toxicol ; 31(10): 1052-1060, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30203651

RESUMO

1,3,8-Trihydroxy-6-methylanthraquinone (emodin), a widely existing natural product in herbal medicines, has been reported to be hepatotoxic, but the exact underlying mechanism is still not fully understood. The objective of the present study was to evaluate the role of CYP3A and glutathione (GSH) in emodin-induced liver injury. Primary human hepatocytes were exposed to emodin with and without addition of CYP3A inducer/inhibitor and GSH synthesis inhibitor. It was found that emodin-mediated cytotoxicity increased when CYP3A was activated and GSH was depleted. Hepatotoxicity induced by emodin in rats by activation/inhibition of CYP3A and depletion of GSH was further investigated. Administration of emodin in combination with l-buthionine sulfoximine (BSO) or dexamethasone (DEX) resulted in aggravated liver injury, whereas pretreatment with ketoconazole (KTZ) suppressed the side effects caused by emodin. In addition, plasma exposure of emodin and its glucuronide metabolite were measured by ultraperformance liquid chromatography triple quadrupole mass spectrometry. Emodin and its glucuronide were lower in BSO-, DEX-, and KTZ- co-treated rats compared with those administered with emodin alone. In conclusion, these mentioned results suggested that CYP3A induction and GSH depletion might be involved in hepatotoxicity induced by emodin. This study may help to understand the risk factors and the mechanism of hepatotoxicity of emodin in humans.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Emodina/toxicidade , Glutationa/metabolismo , Animais , Butionina Sulfoximina/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/toxicidade , Dexametasona/toxicidade , Emodina/análise , Emodina/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
5.
Chem Res Toxicol ; 31(9): 843-851, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30052031

RESUMO

Previous studies have shown that Dioscorea bulbifera rhizome (DBR) can induce hepatotoxicity in clinical practice. However, its underlying mechanisms remain largely unexplored. In the present study, we investigated the global effect of DBR exposure on the proteomic and metabolomic profiles in rats over a 12-week administration using an integrated proteomics and metabolomics approach. The abundance of 1366 proteins and 58 metabolites in the liver of rats after subchronic exposure to DBR was dose-dependently altered. The results indicated that DBR mainly damaged hepatic cells through the aberrant regulation of multiple systems mainly including purine metabolism, pyrimidine metabolism, taurine and hypotaurine metabolism, and bile acid metabolism. Notably, the deregulated proteins including Pnp, Dpyd, Upp1, and Tymp and the differential metabolites including uridine, uracil, cytidine, thymine, adenine, adenosine, adenosine 3'-monophosphate, and deoxycytidine were well correlated to purine and pyrimidine metabolism, which might be novel pathways involved in metabolic abnormalities in rats with DBR-induced liver damage. Collectively, these findings not only contributed to understanding the mechanisms underlying the hepatotoxicity of DBR, but also illustrated the power of integrated proteomics and metabolomics approaches to improve the identification of metabolic pathways and biomarkers indicative of herb-induced liver injury.


Assuntos
Dioscorea/fisiologia , Fígado/efeitos dos fármacos , Metabolômica/métodos , Proteômica , Rizoma/fisiologia , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
6.
Inorg Chem ; 57(16): 10081-10089, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30080025

RESUMO

Classical amino-functionalized Fe-terephthalate metal-organic framework NH2-MIL-53(Fe) and its parent framework MIL-53(Fe) were prepared via simple hydrothermal methods. The catalytic performaces of these two Fe-MOFs were explored for the selective oxidation of H2S. The physicochemical properties of the fresh and used Fe-MOFs catalysts were investigated by XRD, BET, SEM, FT-IR, CO2-TPD, and XPS techniques. It was found that the introduction of amino groups reduces the activation energies for H2S oxidation and endows this catalyst surface with moderate basic sites. As a result, the NH2-MIL-53(Fe) catalyst displays high H2S conversion and near 100% S selectivity in the temperature range of 130-160 °C, outperforming commercial Fe2O3 and activated carbon. Moreover, a plausible reaction route for H2S selective oxidation over NH2-MIL-53(Fe) is proposed. This work opens up the possibility of utilizing MOFs as efficient catalyst for desulfuration reactions.

7.
Chem Res Toxicol ; 30(10): 1865-1873, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28899093

RESUMO

The use of herbal medicines continues to expand globally, meanwhile, herb-associated hepatotoxicity is becoming a safety issue. As a conventional Chinese medicinal herb, Dioscorea bulbifera rhizome (DBR) has been documented to cause hepatic toxicity. However, the exact underlying mechanism remains largely unexplored. In the present study, we aimed to profile entire endogenous metabolites in a biological system using a multisample integrated metabolomics strategy. Our findings offered additional insights into the molecular mechanism of the DBR-induced hepatotoxicity. We identified different metabolites from rat plasma, urine, and feces by employing gas chromatography-mass spectrometry in combination with multivariate analysis. In total, 55 metabolites distributed in 33 metabolic pathways were identified as being significantly altered in DBR-treated rats. Correlation network analysis revealed that the hub metabolites of hepatotoxicity were mainly associated with amino acid, bile acid, purine, pyrimidine, lipid, and energy metabolism. As such, DBR affected the physiological and biological functions of liver via the regulation of multiple metabolic pathways to an abnormal state. Notably, our findings also demonstrated that the multisample integrated metabolomics strategy has a great potential to identify more biomarkers and pathways in order to elucidate the mechanistic complexity of toxicity of traditional Chinese medicine.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dioscorea/química , Medicamentos de Ervas Chinesas/toxicidade , Fígado/efeitos dos fármacos , Metabolômica , Rizoma/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Medicamentos de Ervas Chinesas/administração & dosagem , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
J Asian Nat Prod Res ; 17(7): 717-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25559121

RESUMO

Two new capsaicin analogs, N-(3-methoxy-4-hydroxyphenethyl)-tetracosanamide (1) and N-(3,4-dihydroxyphenethyl)-tetracosanamide (2), along with one new flavonoidal glycoside pinnatifin E (3) were isolated from the ethanolic extract of the seeds of Vaccaria segetalis. Their structures were elucidated on the basis of spectroscopic methods including 1D, 2D NMR, MS, and other spectroscopic techniques, as well as by comparison with the relevant literatures. All compounds were evaluated for their coagulation Factor Xa inhibition activities.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/isolamento & purificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Vaccaria/química , Capsaicina/química , Capsaicina/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fator Xa/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Glicosídeos/análise , Glicosídeos/química , Glicosídeos/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Sementes/química
9.
Food Chem Toxicol ; 135: 110887, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31626840

RESUMO

Studies have shown that 8-epidiosbulbin E acetate (EEA), a major diterpenoid lactone in the tuber of Dioscorea bulbifera, can induce hepatotoxicity in vivo. However, the underlying mechanisms remain unknown. Using the integrated transcriptomic and metabolomics method, in this study we investigated the global effect of EEA exposure on the transcriptomic and metabolomic profiles in mice. The abundance of 7131 genes and 42 metabolites in the liver, as well as 43 metabolites in the serum were altered. It should be noted that EEA mainly damaged hepatic cells through the aberrant regulation of multiple systems primarily including bile acid metabolism, and taurine and hypotaurine metabolism. In addition, an imbalance of bile acid metabolism was found to play a key pat in response to EEA-triggered hepatotoxicity. In summary, these findings contributed to understanding the underlying mechanisms of EEA hepatotoxicity.


Assuntos
Dioscorea/química , Diterpenos/farmacologia , Fígado/efeitos dos fármacos , Metabolômica , Transcriptoma , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Diterpenos/toxicidade , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos ICR
10.
J Proteomics ; 177: 40-47, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29438852

RESUMO

Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. However, PMR-associated hepatotoxicity is becoming a safety issue. Cholestasis often occurs in PMR-induced hepatotoxicity in clinical medicine, but the exact mechanism is not completely understood. An RNA-Seq method was employed, in the present study, to explore the molecular mechanism of cholestatic liver injury induced by PMR, characterized by the hepatic transcriptional response in rats exposed to 1 and 20 g/kg PMR for 90 days. Pathological changes seen in rat livers exposed to PMR included increased bile ducts in portal areas and biliary epithelial cell hyperplasia, which were accompanied by the elevation of serum biochemistries. Dose-dependent increases in the expression of 14 transcripts encoding enzymes involved in the cholesterol biosynthetic pathway were identified. Furthermore, cholesterol 7-alpha hydroxylase (Cyp7a1), a rate-limiting enzyme in the synthesis of bile acids (BAs) from cholesterol, was found to be upregulated by PMR treatment. Protein analysis by western blot suggested that expression of 3-hydroxy-3-methylglutaryl CoA reductase (Hmgcr) and Cyp7a1 were increased in a dose-dependent manner. Collectively, the present study demonstrates that PMR upregulates key enzymes for biosynthesis of cholesterol and BA, which poses the risk of cholestatic liver injury. SIGNIFICANCE: To the best of our knowledge, this is the first transcriptome analysis to highlight the main molecular changes occurring in rats chronic exposed to PMR. We have identified 39 specific differentially expressed genes (DEGs) that were present in various comparisons. A total of 14 of these altered gene transcripts were associated with cholesterol biosynthesis. Another factor of great importance in our opinion seemed to be the enhancement of bile acid (BA) biosynthesis, which were closely linked to cholesterol biosynthesis or metabolism. Our findings suggested that the disturbance on balance of BA formation and elimination might lead to a BA overload in hepatocytes, thereby resulting in liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Colestase/induzido quimicamente , Perfilação da Expressão Gênica/métodos , Polygonum/toxicidade , Animais , Ácidos e Sais Biliares/biossíntese , Vias Biossintéticas/genética , Colesterol/biossíntese , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Ratos , Regulação para Cima
11.
Front Pharmacol ; 9: 1033, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283337

RESUMO

Dictamni Cortex (DC) has been reported to be associated with acute hepatitis in clinic and may lead to a selective sub-chronic hepatotoxicity in rats. Nevertheless, the potent toxic ingredient and the underlying mechanism remain unknown. Dictamnine (DTN), the main alkaloid from DC, possesses a furan ring which was suspected of being responsible for hepatotoxicity via metabolic activation primarily by CYP3A4. Herein, the present study aimed to evaluate the role of CYP3A4 in DTN-induced liver injury. The in vitro results showed that the EC50 values in primary human hepatocytes (PHH), L02, HepG2 and NIH3T3 cells were correlated with the CYP3A4 expression levels in corresponding cells. Furthermore, the toxicity was increased in CYP3A4-induced PHH by rifampicin, and CYP3A4 over-expressed (OE) HepG2 and L02 cells. Contrarily, the cytotoxicity was decreased in CYP3A4-inhibited PHH and CYP3A4 OE HepG2 and L02 cells inhibited by ketoconazole (KTZ). In addition, the hepatotoxicity of DTN in enzyme induction/inhibition mice was further investigated in the aspects of biochemistry, histopathology, and pharmacokinetics. Administration of DTN in combination with KTZ resulted in attenuated liver injury, including lower alanine transaminase and aspartate transaminase activities and greater AUC and C max of serum DTN, whereas, pretreatment with dexamethasone aggravated the injury. Collectively, our findings illustrated that DTN-induced hepatotoxicity correlated well with the expression of CYP3A4, namely inhibition of CYP3A4 alleviated the toxicity both in vitro and in vivo, and induction aggravated the toxicity effects.

12.
J Ethnopharmacol ; 226: 111-119, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30114519

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea bulbifera rhizome (DBR), one type of herbal medicine, is extensively used in both Indian and Chinese system of traditional medicine. It has been effective in treating various diseases, such as sore throat, struma, and tumors. However, more and more clinical investigations have suggested that DBR can cause liver injury. AIM OF THE STUDY: In the present study, we aimed to characterize the corresponding molecular changes of liver dysfunction and reveal overall metabolic and physiological mechanisms of the subchronic toxic effect of DBR. MATERIALS AND METHODS: A liver-specific metabolomics approach integrating GC-MS and 1H-NMR was developed to assess the hepatotoxicity in rats after DBR exposure for 12 weeks. Multivariate statistical analysis and pattern recognition were employed to examine different metabolic profiles of liver in DBR-challenged rats. RESULTS: A total of 61 metabolites were screened as significantly altered metabolites, which were distributed in 43 metabolic pathways. The correlation network analysis indicated that the hub metabolites of hepatotoxicity could be mainly linked to amino acid, lipid, purine, pyrimidine, bile acid, gut microflora, and energy metabolisms. Notably, purine, pyrimidine, and gut microflora metabolisms might be novel pathways participating in metabolic abnormalities in rats with DBR-triggered hepatic damage. CONCLUSIONS: Our results primarily showed that the liver-specific metabolic information provided by the different analytical platforms was essential for identifying more biomarkers and metabolic pathways, and our findings provided novel insights into understand the mechanistic complexity of herb-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dioscorea , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Gasosa-Espectrometria de Massas , Fígado/metabolismo , Fígado/patologia , Masculino , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
13.
RSC Adv ; 8(14): 7765-7773, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539098

RESUMO

Diterpenoid lactones (DLs) have been reported to be the main hepatotoxic constituents in Dioscorea bulbifera tubers (DBT), a traditional Chinese medicinal herb. The acquisition of early information regarding its metabolism is critical for evaluating the potential hepatotoxicity of DLs. We investigated, for the first time, the main metabolites of diosbulbin A (DIOA), diosbulbin C (DIOC), diosbulbin (DIOG), diosbulbin (DIOM) and diosbulbin (DIOF) in adult zebrafish. By using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS), 6, 2, 7, 5 and 4 metabolites of DIOA, DIOC, DIOF, DIOM and DIOG were identified in the zebrafish body and the aqueous solution, respectively. Both phase-I and phase-II metabolites were observed in the metabolic profiles and the metabolic pathways involved in hydroxyl reduction, glucuronidation, glutathione conjugation and sulfation. The above results indicated that hepatocytic metabolism might be the major route of clearance for DLs. This study provided important information for the understanding of the metabolism of DLs in DBT.

14.
Chin J Nat Med ; 15(6): 451-457, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28629535

RESUMO

Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. However, PMR-associated hepatotoxicity is becoming a safety issue. In our previous in vivo study, an interaction between stilbenes and anthraquinones has been discovered and a hypothesis is proposed that the interaction between stilbene glucoside-enriching fraction and emodin may contribute to the side effects of PMR. To further support our previous in vivo results in rats, the present in vitro study was designed to evaluate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) on the cellular absorption and human liver microsome metabolism of emodin. The obtained results indicated that the absorption of emodin in Caco-2 cells was enhanced and the metabolism of emodin in human liver microsomes was inhibited after TSG treatment. The effects of the transport inhibitors on the cellular emodin accumulation were also examined. Western blot assay suggested that the depressed metabolism of emodin could be attributed to the down-regulation of UDP-glucuronosyltransferases (UGTs) 1A8, 1A10, and 2B7. These findings definitively demonstrated the existence of interaction between TSG and emodin, which provide a basis for a better understanding of the underlying mechanism for PMR-induced liver injury.


Assuntos
Emodina/metabolismo , Fallopia multiflora/efeitos adversos , Glucosídeos/toxicidade , Estilbenos/toxicidade , Células CACO-2 , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Emodina/análise , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Raízes de Plantas
15.
Front Pharmacol ; 8: 446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729838

RESUMO

Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. PMR-associated hepatotoxicity has been drawing increasingly more attention in recent years in parallel with its wide utilization. Anthraquinones (AQs) are recognized as the main hepatotoxic components in PMR. However, the exact underlying mechanism of AQs poisoning is still not fully understood. Herein, we proposed a hypothesis that metabolic activation of AQs such as emodin was involved in PMR-induced liver injury, AQs followed to generate the electrophilic reactive metabolites and subsequently formed covalent adduct with cellular nucleophiles in the liver to exert hepatotoxicity. In the present study, the link of cytotoxicity of PMR in primary human hepatocytes and the depletion of glutathione (GSH) was investigated by MTT assay and UHPLC-QqQ-MS/MS analysis. The results showed that PMR depleted GSH and therefore induced cytotoxicity. Then, emodin-GSH adduct was identified in bile of liver injured rats after intragastric administration of PMR or emodin with the aid of UHPLC-QTOF-MS/MS method. Our findings not only provided confirmative evidence that the mechanism of hepatotoxicity induced by AQs in PMR involved key metabolic steps, but also revealed that emodin-GSH adduct had potential to be further developed as a sensitive and traceable biomarker for the assessment of PMR-induced liver injury.

16.
Food Chem Toxicol ; 108(Pt B): 532-542, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28237774

RESUMO

Polygoni Multiflori Radix (PMR) has been widely used as a tonic for centuries. However, hepatotoxicity cases linked to PMR have been frequently reported and appropriate biomarkers for clinical diagnosis are currently lacking. Here, an approach using UPLC-QqQ/MS-based targeted metabolomics of bile acids (BAs) complemented with biochemistry and histopathology was applied to characterize the development and recovery processes of PMR-induced hepatotoxicity in rats and to identify biomarkers. The expression of bile salt export pump (Bsep) and sodium taurocholate cotransporting polypeptide (Ntcp) were evaluated to investigate the underlying mechanism. Steatosis and inflammatory cell infiltration were observed in PMR-treated rats, which were accompanied by the elevation of serum biochemistry. The metabolic profiles of BAs were analyzed by Principal Component Analysis, hyodeoxycholic acid (HDCA) in serum and tauro-ß-muricholic acid (TßMCA) in urine were identified as potential biomarkers for PMR-induced hepatotoxicity. The elevated expression of Bsep and decreased expression of Ntcp in the liver of PMRtreated rats indicated that hepatotoxicity was related to the disorders of BAs metabolism. Our study demonstrated that BAs may be used for clinical diagnosis of PMR-induced hepatotoxicity. Urine TßMCA was identified as a promising biomarker to facilitate the clinical monitoring of PMR-induced hepatotoxicity and may serve as potential therapeutic target.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fallopia multiflora/química , Ácido Taurocólico/análogos & derivados , Animais , Ácidos e Sais Biliares/sangue , Biomarcadores , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Ácido Taurocólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA