Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transl Res ; 12(8): 4237-4250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913501

RESUMO

Facial nerve schwannomas (FNS) represents one of the more difficult treatment paradigms in neurotology. The aim of this study is to investigate the molecular alterations of FNS, thus providing potential targets treatable in the tumour. We for the first time suggest that the deficiency of merlin (the product of NF2 tumour suppressor) is probably one of the key mechanisms underlying FNS tumourigenesis, although no disease-causing NF2 mutations were demonstrated in tumour samples. TMT-labeled spectrometry analysis was used to identify the proteome of FNS relative to nerve controls. Eighty-four significantly deregulated proteins were identified, among which the PML tumour suppressor showed the most significantly increased expression. The PML protein was distributed in the nucleoplasm of non-tumorous Schwann cells, whereas it was preferentially confined to the cytoplasm of FNS cultures. Overexpression of PML and p53, partner proteins positively regulating each other to trigger apoptosis, was further confirmed in FNS tissues/cultures, and this correlated with a significant decrease in the proliferation of FNS cultures in comparison to Schwann cells. It is therefore probable that PML-p53 overexpression may occur as part of protective cellular mechanisms in response to the proliferation signal mediated by loss of merlin in FNS, in accordance with the fact that the tumour is benign slow-growing. This hypothesis was supported by the finding that the p53 activator nutlin-3 could exert dose-dependent inhibitory effects on FNS cultures via a cooperative induction of PML-p53 levels. Thus, the current study may present a potential treatment target directed on the molecular mechanisms of this disease.

2.
Biochem Biophys Rep ; 17: 17-22, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30519644

RESUMO

Single-nucleotide polymorphisms (SNPs) located in the promoter region of the receptor for advanced glycation end products (RAGE) gene have been linked to the activity of RAGE. However, contrary to our expectation, we previously detected no correlation between SNPs within the RAGE promoter and ulcerative colitis (UC) risk in a case-control study. Here, we investigated the methylation of the RAGE promoter and analyzed the collective contribution of methylation and SNPs to UC risk. We found that RAGE promoter hypomethylation was more common in UC patients compared to controls (70% vs. 30%, respectively), as determined via bisulfite sequencing PCR (BSP) and methylation-specific PCR (MSP). Furthermore, we investigated the cooperativity of promoter methylation and SNPs and found that either of two SNPs (rs1800624 or rs1800625) and promoter methylation jointly contributed to UC risk (30 UC patients vs. 30 controls, P < 0.05). There was no correlation between UC risk and either methylation or SNPs when analyzed separately. This lack of correlation is likely due to promoter methylation repressing gene transcription, whereas SNPs in the RAGE promoter region activate RAGE transcription. We found that variant allele carriers with promoter hypomethylation were at an increased risk for UC (rs1800624, OR = 10, 95% CI: 1.641-60.21, P = 0.009; rs1800625, OR = 4.8, 95% CI: 1.074-21.447, P = 0.039). Furthermore, our data revealed that the RAGE mRNA levels in variant allele carriers with promoter hypomethylation were significantly higher compared to those with promoter hypermethylation (P < 0.05) as well as to those in wild-type allele individuals exhibiting promoter hypomethylation (P < 0.05). We therefore speculate that the methylation status and SNPs present in the RAGE promoter region alter RAGE transcription, thereby impacting UC risk. We also propose that the methylation status and RAGE promoter genotype could jointly serve as clinical biomarkers to assist in UC risk assessment.

3.
J Alzheimers Dis ; 66(3): 887-899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30400091

RESUMO

Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disease. The main pathological features of AD are the formation of amyloid-ß deposits in the anterior cerebral cortex and hippocampus as well as the formation of intracellular neurofibrillary tangles. Thus far, accumulating evidence shows that glycation is closely related to AD. As a final product resulting from the crosslinking of a reducing sugar or other reactive carbonyls and a protein, the advanced glycation end products have been found to be associated with the formation of amyloid-ß and neurofibrillary tangles in AD. As a saccharification inhibitor, the glyoxalase system and its substrate methylglyoxal (MG) were certified to be associated with AD onset and development. As an active substance of AGEs, MG could cause direct or indirect damage to nerve cells and tissues. MG is converted to D-lactic acid after decomposition by the glyoxalase system. Under normal circumstances, MG metabolism is in a dynamic equilibrium, whereas MG accumulates in cells in the case of aging or pathological states. Studies have shown that increasing glyoxalase activity and reducing the MG level can inhibit the generation of oxidative stress and AGEs, thereby alleviating the symptoms and signs of AD to some extent. This paper focuses on the relevant mechanisms of action of the glyoxalase system and MG in the pathogenesis of AD, as well as the potential of inhibiting the production of advanced glycation end products in the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Estresse Oxidativo/fisiologia
4.
Front Genet ; 9: 540, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555509

RESUMO

To determine the role of A disintegrin and metalloproteinase 10 (ADAM10) in genetic susceptibility to Alzheimer's disease (AD) in a representative Chinese sample, we genotyped 362 AD patients and 370 healthy controls for the rs514049A/C and rs653765C/T polymorphisms in the ADAM10 promoter using the SNaPshot technique. We also examined the potential impact of these polymorphisms on the plasma level of soluble receptor for advanced glycation end products (sRAGE), a decoy receptor whose reduction has been associated with a higher risk of AD. Additionally, a meta-analysis was performed using the present study and the largest GWAS from the International Genomics of Alzheimer's Project (IGAP). No significant differences were found in the distributions of genotypes or alleles between AD patients and control subjects. However, age-at-onset stratification analysis revealed that there were significant differences in the genotypes (P = 0.015) and alleles (P = 0.006) of the rs653765 SNP. Furthermore, patients with the rs653765 CC genotype showed a lower ADAM10 level and a faster cognitive deterioration than those in patients with the CT/TT genotype in late-onset AD (LOAD), and the rs653765 CC polymorphism was able to regulate the production of the ADAM10 substrate sRAGE. In contrast, the rs514049 polymorphism was not statistically associated with AD. In the meta-analysis, we observed that both rs514049 (A allele vs. C allele, P = 0.002) and rs653765 (C allele vs. T allele, P = 0.004) were associated with AD risk. The present study indicated that the rs653765 polymorphism might be associated with the risk and development of LOAD; in particular, the risk genotype, CC, may decrease the expression of ADAM10, influencing the plasma levels of sRAGE, and thus may be correlated with the clinical progression of AD.

5.
Neural Regen Res ; 7(5): 386-91, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25774179

RESUMO

Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. The results showed that synaptic reorganization, axonal sprouting, and neurogenesis are critical factors for neural circuit reconstruction. Directed functional exercise, neurotrophic factor and transplantation of nerve-derived and non-nerve-derived tissues and cells can effectively ameliorate functional disturbances caused by spinal cord injury and improve quality of life for patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA