Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611257

RESUMO

Trans-splicing of a spliced leader (SL) to the 5' ends of mRNAs is used to produce mature mRNAs in several phyla of great importance to human health and the marine ecosystem. One of the consequences of the addition of SL sequences is the change or disruption of the open reading frames (ORFs) in the recipient transcripts. Given that most SL sequences have one or more of the trinucleotide NUG, including AUG in flatworms, trans-splicing of SL sequences can potentially supply a start codon to create new ORFs, which we refer to as slORFs, in the recipient mRNAs. Due to the lack of a tool to precisely detect them, slORFs were usually neglected in previous studies. In this work, we present the tool slORFfinder, which automatically links the SL sequences to the recipient mRNAs at the trans-splicing sites identified from SL-containing reads of RNA-Seq and predicts slORFs according to the distribution of ribosome-protected footprints (RPFs) on the trans-spliced transcripts. By applying this tool to the analyses of nematodes, ascidians and euglena, whose RPFs are publicly available, we find wide existence of slORFs in these taxa. Furthermore, we find that slORFs are generally translated at higher levels than the annotated ORFs in the genomes, suggesting they might have important functions. Overall, this study provides a tool, slORFfinder (https://github.com/songbo446/slORFfinder), to identify slORFs, which can enhance our understanding of ORFs in taxa with SL machinery.


Assuntos
RNA Líder para Processamento , Trans-Splicing , Humanos , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Fases de Leitura Aberta , Ecossistema , Sequência de Bases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Splicing de RNA
2.
Chem Soc Rev ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072682

RESUMO

During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.

3.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671368

RESUMO

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Musa , Transcriptoma , Triazóis , Musa/genética , Musa/efeitos dos fármacos , Musa/fisiologia , Musa/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triazóis/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/efeitos dos fármacos , Temperatura Baixa , Perfilação da Expressão Gênica , Giberelinas/metabolismo
4.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35698834

RESUMO

Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package 'OrfPP', which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.


Assuntos
Ribossomos , Genoma , Fases de Leitura Aberta , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polimorfismo de Nucleotídeo Único
5.
Angew Chem Int Ed Engl ; 62(10): e202216340, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36591914

RESUMO

Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.

6.
Angew Chem Int Ed Engl ; 62(49): e202313016, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37823882

RESUMO

Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.

7.
BMC Med Educ ; 22(1): 42, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042499

RESUMO

BACKGROUND: Postgraduate entrance examination (the Unified National Graduate Entrance Examination) is the major way for Chinese medical undergraduate student to apply for postgraduate studies. It consists of two stages: the preliminary basic written test and the re-examination in form of both written tests and interviews. With the spread of COVID-19, the traditional on-site re-examination of postgraduates must be changed to online re-examination. By comparing the re-examination process and admission results of online and on-site re-examination, we studied the feasibility of online re-examination for postgraduates and measures to improve it. METHODS: This was a retrospective cohort study using data from the Unified National Graduate Entrance Examination. Our sample population was the applicants to Peking University Third Hospital (PUTH) who completed re-examinations. In total, 281 records were successively selected from March 2017 to May 2020. By comparing the re-examination process and admission results of the 2020 online re-examination with those of the 2017-2019 on-site re-examinations, we analyzed the process, difficulties and improvement of online re-examination. RESULTS: A total of 281 subjects were included, of whom 77.9% completed an on-site re-examination in 2017-2019 and 22.1% completed the 2020 online re-examination. In the on-site re-examinations, 70.8% of the students were admitted, and in the online re-examination, 74.2% of the students were admitted. There were no significant differences between the students who completed on-site and online re-examinations in terms of gender, recent graduation, cultivation type, graduate from a key university, and admission (P>0.05). The on-site and online re-examination results were very similar among the admitted students. The multivariable logistic regression analysis showed that online re-examination had no effect on student admissions. Students seeking professional degree were less likely to be admitted than those seeking academic degree, and those with a better standardized rank in medicine and a better standardized rank of re-examination score were more likely to be admitted. CONCLUSIONS: The online re-examination implemented in 2020 during the COVID-19 pandemic achieved the same selective effect as on-site re-examination. Effective time management, a standardized test question template, well-trained staff and effective technology are the keys to success.


Assuntos
COVID-19 , Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
8.
Environ Monit Assess ; 194(10): 737, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068415

RESUMO

Solvents, components of pesticide emulsifiable concentrates (ECs), emit quantities of volatile organic compounds (VOCs) into the atmosphere. In the air, their active involvement in oxidative chemical reactions with oxidants exposed to ultraviolet solar radiation can result in the formation of ozone. The quantitative assessment of VOC emissions from agricultural pesticide applications remains hampered by many factors, especially the volatility coefficient of solvents in pesticides. Therefore, this study identified solvents in 20 widely used pesticide products in China. The volatility coefficients of the solvents were investigated based on a spraying test to evaluate VOC emissions from agricultural pesticide applications and their ozone formation potential (OFP). The results suggest that VOC emissions from agricultural pesticide applications amount to 0.60 Mt in 2017, with insecticides, fungicides, and herbicides contributing 0.39 Mt, 0.12 Mt, and 0.09 Mt of VOCs, respectively. Since VOC emission and maximum incremental reactivity (MIR) led to an OFP value (2.1 g ozone/g product) for insecticides, a primary consideration should be to decrease use of solvents with high volatility coefficients and large MIR values in insecticide products. This work could provide valuable insights regarding response options to reduce VOC emissions and ozone formation.


Assuntos
Poluentes Atmosféricos , Inseticidas , Ozônio , Praguicidas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise , Solventes , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
9.
Angew Chem Int Ed Engl ; 61(46): e202209454, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052955

RESUMO

Herein, we synthesized new hetero-halogenated end groups with well-determined fluorinated and chlorinated substitutions (o-FCl-IC and FClF-IC), and synthesized regioisomer-free small molecular acceptors (SMAs) Y-Cl, Y-FCl, and Y-FClF with distinct hetero-halogenated terminals, respectively. The single-crystal structures and theoretical calculations indicate that Y-FClF exhibits more compact three-dimensional network packing and more significant π-π electronic coupling compared to Y-FCl. From Y-Cl to Y-FCl to Y-FClF, the neat films exhibit a narrower optical band gap and gradually enhanced electron mobility and crystallinity. The PM6 : Y-FClF blend film exhibits the strongest crystallinity with preferential face-on molecular packing, desirable fibrous morphology with suitable phase segregation, and the highest and balanced charge mobilities among three blend films. Overall, the PM6 : Y-FClF organic solar cells (OSCs) deliver a remarkable efficiency of 17.65 %, outperforming the PM6 : Y-FCl and PM6 : Y-Cl, which is the best PCE for reported hetero-halogens-based SMAs in binary OSCs. Our results demonstrate that difluoro-monochloro hetero-terminal is a superior regio-regular unit for enhancing the intermolecular crystal packing and photovoltaic performance of hetero-halogenated SMAs.

10.
Angew Chem Int Ed Engl ; 61(33): e202205168, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736791

RESUMO

Intramolecular Cl-S non-covalent interaction is introduced to modify molecular backbone of a benzodithiophene terthiophene rhodamine (BTR) benchmark structure, helping planarize and rigidify the molecular framework for improving charge transport. Theoretical simulations and temperature-variable NMR experiments clearly validate the existence of Cl-S non-covalent interaction in two designed chlorinated donors and explain its important role in enhancing planarity and rigidity of the molecules for enhancing their crystallinity. The asymmetric isomerization of side-chains further optimizes the molecular orientation and surface energy to strike a balance between its crystallinity and miscibility. This carefully manipulated molecular design helps result in increased carrier mobility and suppressed charge recombination to obtain simultaneously enhanced short-circuit current (Jsc ) and fill factor (FF) and a very high efficiency of 15.73 % in binary all-small-molecule organic solar cells.

11.
Ecotoxicol Environ Saf ; 187: 109859, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677573

RESUMO

Chrysanthemum (Dendranthema grandiflora) flowers are consumed as a popular, traditional herbal tea worldwide. During tea infusion with hot water pesticide residues in chrysanthemum flowers can be transferred into tea solution, posing potential health risks to consumers. Using greenhouse chrysanthemum this study systematically investigated the transfer of metalaxyl-M, fludioxonil, cyantraniliprole, thiamethoxam, and clothianidin (a major metabolite of thiamethoxam) from dry chrysanthemum flowers to tea solution at a range of infusion repetitions, duration and water temperature. The tested pesticides were released into tea solution at varying degrees, and the maximum transfer percentage was 59.9%, 9.8%, 29.4%, 88.2% and 68.4% for metalaxyl-M, fludioxonil, cyantraniliprole, thiamethoxam, and clothianidin, respectively. The transfer of pesticides into tea solution generally increased with increasing pesticide water solubility, water temperature, infusion duration, and pesticide concentrations in dry chrysanthemum flowers, but decreased with increasing octanol-water partition coefficient and the number of infusion repetitions. Risk quotient for pesticide intake via consuming tea solution of chrysanthemum flowers (one and two times of recommended pesticide dosages) ranged from <0.00003 to 0.0924, indicating a low health risk. This study provides useful information for risk assessment of pesticide residues in greenhouse chrysanthemum flowers and may help establish realistic maximum residue limit of pesticides in chrysanthemum flowers and tea solution.


Assuntos
Chrysanthemum/química , Flores/química , Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise , Chás de Ervas/análise , Medição de Risco , Solubilidade
12.
J Hazard Mater ; 465: 133385, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38160558

RESUMO

Volatile organic compounds (VOCs) are considered as important precursors of ozone in the air, while the contribution of VOCs from pesticide application (PVOCs) to ozone production is unknown. Utilizing data from the Ministry of Agriculture and Rural Affairs of the People's Republic of China and ChinaCropPhen1km, this paper developed PVOC emission inventories with a resolution of 1 km for the main crops (rice, maize, and wheat) from 2012 to 2019 in China. The results revealed that pesticide application is an important VOC emission source in China. Specially, the PVOC emissions from the major grain-producing regions in June accounted for approximately 30% of the annual total PVOC emissions in the local regions. The simulation with the Weather Research and Forecasting Community Multiscale Air Quality model (WRF-CMAQ) indicated that the PVOC emissions increased the mean maximum daily 8-hour average (MDA8) ozone concentration across China by 2.5 ppb in June 2019. During the same period, PVOCs in the parts of North China Plain contributed 10% of the ozone formation. Under the comprehensive emission reduction scenario, it is anticipated that by 2025, the joint implementation of measures including reducing pesticide application, improving pesticide utilization efficiency and promoting solvent substitution will decrease PVOC emissions by 60% compared with 2019, thereby mitigating ozone pollution.

13.
Adv Mater ; 36(3): e2305356, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555531

RESUMO

Most top-rank organic solar cells (OSCs) are manufactured by the halogenated solvent chloroform, which possesses a narrow processing window due to its low-boiling point. Herein, based on two high-boiling solvents, halogenated solvent chlorobenzene (CB) and non-halogenated green solvent ortho-xylene (OX), preparing active layers with the hot solution is put forward to enhance the performance of the OSCs. In situ test and morphological characterization clarify that the hot-casting strategy assists in the fast and synchronous molecular assembly of both donor and acceptor in the active layer, contributing to preferable donor/acceptor ratio, vertical phase separation, and molecular stacking, which is beneficial to charge generation and extraction. Based on the PM6:BO-4Cl, the hot-casting OSCs with a wide processing window achieve efficiencies of 18.03% in CB and 18.12% in OX, which are much higher than the devices processed with room temperature solution. Moreover, the hot-casting devices with PM6:BTP-eC9 deliver a remarkable fill factor of 80.31% and efficiency of 18.52% in OX, representing the record value among binary devices with green solvent. This work demonstrates a facile strategy to manipulate the molecular distribution and arrangement for boosting the efficiency of OSCs with high-boiling solvents.

14.
Adv Mater ; : e2405718, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014920

RESUMO

As-cast organic solar cells (OSCs) possess tremendous potential for low-cost commercial applications. Herein, five small-molecule acceptors (A1-A5) are designed and synthesized by selectively and elaborately extending the alkyl inner side chain flanking on the pyrrole motif to prepare efficient as-cast devices. As the extension of the alkyl chain, the absorption spectra of the films are gradually blue-shifted from A1 to A5 along with slightly uplifted lowest unoccupied molecular orbital energy levels, which is conducive for optimizing the trade-off between short-circuit current density and open-circuit voltage of the devices. Moreover, a longer alkyl chain improves compatibility between the acceptor and donor. The in situ technique clarifies that good compatibility will prolong molecular assembly time and assist in the preferential formation of the donor phase, where the acceptor precipitates in the framework formed by the donor. The corresponding film-formation dynamics facilitate the realization of favorable film morphology with a suitable fibrillar structure, molecular stacking, and vertical phase separation, resulting in an incremental fill factor from A1 to A5-based devices. Consequently, the A3-based as-cast OSCs achieve a top-ranked efficiency of 18.29%. This work proposes an ingenious strategy to manipulate intermolecular interactions and control the film-formation process for constructing high-performance as-cast devices.

15.
Pest Manag Sci ; 80(1): 133-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103431

RESUMO

BACKGROUND: Bioherbicides are becoming more attractive as safe weed control tools towards sustainable agriculture. Natural products constitute an important source chemicals and chemical leads for discovery and development of novel pesticide target sites. Citrinin is a bioactive compound produced by fungi of the genera Penicillium and Aspergillus. However, its physiological-biochemical mechanism as a phytotoxin remains unclear. RESULTS: Citrinin causes visible leaf lesions on Ageratina adenophora similar to those produced by the commercial herbicide bromoxynil. Phytotoxicity bioassay tests using 24 plant species confirmed that citrinin has a broad activity spectrum and therefore has potential as a bioherbicide. Based on chlorophyll fluorescence studies, citrinin mainly blocks PSII electron flow beyond plastoquinone QA at the acceptor side, resulting in the inactivation of PSII reaction centers. Furthermore, molecular modeling of citrinin docking to the A. adenophora D1 protein suggests that it binds to the plastoquinone QB site by a hydrogen bond between the O1 hydroxy oxygen atom of citrinin and the histidine 215 of the D1 protein, the same way as classical phenolic PSII herbicides do. Finally, 32 new citrinin derivatives were designed and sorted according to free energies on the basis of the molecular model of an interaction between the citrinin molecule and the D1 protein. Five of the modeled compounds had much higher ligand binding affinity within the D1 protein compared with lead compound citrinin. CONCLUSION: Citrinin is a novel natural PSII inhibitor that has the potential to be developed into a bioherbicide or utilized as a lead compound for discovery of new derivatives with high herbicidal potency. © 2023 Society of Chemical Industry.


Assuntos
Citrinina , Herbicidas , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Controle de Plantas Daninhas
16.
Dev Cell ; 59(4): 482-495.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272027

RESUMO

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


Assuntos
Neocórtex , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular , Expressão Gênica , Neocórtex/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
17.
Front Plant Sci ; 14: 1094715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875581

RESUMO

The roles of short/small open reading frames (sORFs) have been increasingly recognized in recent years due to the rapidly growing number of sORFs identified in various organisms due to the development and application of the Ribo-Seq technique, which sequences the ribosome-protected footprints (RPFs) of the translating mRNAs. However, special attention should be paid to RPFs used to identify sORFs in plants due to their small size (~30 nt) and the high complexity and repetitiveness of the plant genome, particularly for polyploidy species. In this work, we compare different approaches to the identification of plant sORFs, discuss the advantages and disadvantages of each method, and provide a guide for choosing different methods in plant sORF studies.

18.
Chemosphere ; 341: 140032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659508

RESUMO

CuFeS2 is regarded as a promising catalyst for heterogeneous activation to remove organic contaminants in wastewater. However, effects of solvents in regulating material synthesis and catalytic activity are still not clear. Herein, we reported the role of water, ethanol, ethylene glycol (EG), glycerol, and polyethylene glycol 200 on the synthesis of CuFeS2 micro-flowers and their performance in activating persulfate (PS) to remove imidacloprid (IMI) pesticide. The results showed that the solvent had an effect on the morphology, crystallinity, yields, specific surface areas and unpaired electrons of CuFeS2 micro-flowers. The degradation experiments revealed the efficient catalytic activity of EG-mediated CuFeS2 for heterogeneous PS activation. SO4•- and •OH were identified in EG-CuFeS2/PS system and •OH (90.4%) was the dominant reactive species. Meanwhile, stable 20% of η[PMSO2] (the molar ratio of PMSO2 generation to PMSO consumption) was achieved and demonstrated that Fe(IV) was also involved in the degradation process. Moreover, S2- promoted the cycling of Fe3+/Fe2+ and Cu2+/Cu+, enhancing the synergistic activation and reusability of the catalyst. Density functional theory (DFT) calculations verified that PS was adsorbed by Fe atom and electron transfer occurred on the catalyst surface. Three possible degradation pathways of IMI were proposed by analysis of the degradation intermediates and their toxicities were evaluated by ECOSAR. This study not only provides a theoretical foundation for catalyst design, but also promotes the industrial application of bimetallic sulfide Fenton-like catalysts for water management.


Assuntos
Etilenoglicol , Poluentes Químicos da Água , Oxirredução , Nitrocompostos , Sulfetos , Água , Glicóis , Poluentes Químicos da Água/análise
19.
Chemosphere ; 311(Pt 1): 136938, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36280118

RESUMO

Dissolved organic matter regulates the interaction between microplastics (MPs) and organic pollutants. Here, this paper investigated the effect and mechanism of humic acid (HA) on the adsorption behavior of thiacloprid at two microfibers (MFs)/water interface, and compared the differences in the performance of MFs and pure MPs. The results showed that 10 mg L-1 HA decreased the adsorption capacity and the partition coefficient KD of thiacloprid on MFs and pure MPs. Spectral analysis showed that HA could form hydrogen bonds and van der Waals forces with both MPs and thiacloprid, ultimately affecting the adsorption behavior of thiacloprid at MPs/water interface via competitive adsorption and bridging effect. Furthermore, two-dimensional correlation spectroscopy demonstrated that thiacloprid was preferentially adsorbed onto MPs compared with HA. Finally, density functional theory calculation demonstrated that phenolic-OH, -COOH, and alcoholic-OH played critical roles in competing adsorption and bridging effect. This study offers a theoretical foundation for a better comprehension of the adsorption behavior of organic pollutants at the MPs/water interface.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Substâncias Húmicas , Adsorção , Água/química , Plásticos , Microplásticos , Poluentes Químicos da Água/análise
20.
Environ Sci Pollut Res Int ; 30(30): 75595-75609, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37222897

RESUMO

In this work, FeS supported SBA-15 mesoporous silica catalyst (FeS@SBA-15) was synthesized successfully, characterized and first applied to persulfate (PS) activation for the degradation of imidacloprid in wastewater. The as-prepared 3.5-FeS@SBA-15 presented an impressive imidacloprid removal efficiency of 93.1% and reaction stoichiometric efficiency (RSE) of 1.82% after 5 min, ascribed to the synergetic effects of improved FeS dispersion and abundant surface sites by SBA-15. Electron paramagnetic resonance spectra and quenching experiments proved that both SO4·- and ·OH were produced in FeS@SBA-15/PS system, and SO4·- played a dominant role in the degradation process. The S2- can accelerate the cycling of Fe(III)/Fe(II) during activation and increase the steady-state concentration of Fe(II). More importantly, the constructed heterogeneous system exhibited an efficient and stable catalytic activity over a wide range of pH (3.0-9.0), temperature (283K-313K), inorganic ion (NO3-) and humic acid (1-20 mg/L). Moreover, the density functional theory calculations were conducted to predict the potential reaction sites of imidacloprid. Based on eighteen identified intermediates, four main degradation pathways were proposed: hydroxylation, dechlorination, hydrolysis, and the ring cleavage of the imidazolidine. ECOSAR analysis indicated hydroxylation and dechlorination played a key role in the detoxification of the formed compounds. These findings would provide new insights into the application of FeS@SBA-15 catalyst in wastewater treatment and the removal mechanism of imidacloprid from wastewater.


Assuntos
Neonicotinoides , Poluentes Químicos da Água , Compostos Ferrosos , Ferro/química , Oxirredução , Dióxido de Silício/química , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA