Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
BMC Plant Biol ; 24(1): 807, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187785

RESUMO

Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.


Assuntos
Acetatos , Cádmio , Ciclopentanos , Oxilipinas , Reguladores de Crescimento de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/farmacologia , Cádmio/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo
2.
BMC Pediatr ; 24(1): 62, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245683

RESUMO

Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) type 2, caused by MDS1 and EVI1 complex locus (MECOM) gene mutations, is a rare inherited bone marrow failure syndrome (IBMFS) with skeletal anomalies, characterized by varying presentation of congenital thrombocytopenia (progressing to pancytopenia), bilateral proximal radioulnar synostosis, and other skeletal abnormalities. Due to limited knowledge and heterogenous manifestations, clinical diagnosis of the disease is challenging. Here we reported a novel MECOM mutation in a Chinese boy with typical clinical features for RUSAT-2. Trio-based whole exome sequencing of buccal swab revealed a novel heterozygous missense mutation in exon 11 of the MECOM gene (chr3:168818673; NM_001105078.3:c.2285G > A). The results strongly suggest that the variant was a germline mutation and disease-causing mutation. The patient received matched unrelated donor hematopoetic stem cell transplantation (HSCT). This finding was not only expanded the pathogenic mutation spectrum of MECOM gene, but also provided key information for clinical diagnosis and treatment of RUSAT-2.


Assuntos
Mutação de Sentido Incorreto , Rádio (Anatomia) , Sinostose , Trombocitopenia , Ulna , Humanos , Masculino , China , Proteína do Locus do Complexo MDS1 e EVI1/genética , Mutação , Rádio (Anatomia)/anormalidades , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Fatores de Transcrição/genética , Ulna/anormalidades
3.
Ecotoxicol Environ Saf ; 271: 115969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219621

RESUMO

Phytoremediation is an effective way to remediate metal-contaminated soils. During phytoremediation, plants immobilize heavy metals through the roots to reduce the mobility, toxicity and dispersal of the metals, and the changes in the activity of the roots are often accompanied by changes in the rhizosphere ecosystems, in which rhizobacteria are essential components and interact with roots to maintain the stability of the rhizosphere ecosystem and improve soil health. In this study, the phytoremediation potential of Sasa argenteostriata (Regel) E.G. Camu and the response of rhizobacteria were revealed with different levels of lead-zinc tailing contamination (Pb, Zn, and Cd concentrations of 1197.53, 3243.40, and 185.44 mg/kg for M1 and 2301.71, 6087.95, and 364.00 mg/kg for M2, respectively). The BCF of Sasa argenteostriata increased with increasing soil pollution, and the BCFPb, BCFZn, and BCFCd were 0.19, 0.27, and 0.08, respectively, under the M2 treatment; in contrast, the TF decreased with increasing soil pollution, and the TFPb, TFZn, and TFCd were 0.39, 0.85, and 0.07, respectively, under the M1 treatment. The mobility of Pb in the rhizosphere was higher than that of Zn and Cd, and the percentage of residual (Res) Zn and Cd in the rhizosphere increased, while the acid-soluble (Aci) Pb was significantly higher, leading to obvious uptake of Pb by the roots. Correlation analysis showed that Sasa argenteostriata affected the rhizobacterial community by changing the rhizosphere soil pH, the contents of organic matter and NRFM, and bacteria such as Proteobacteria and MND1, which are highly resistant to heavy metals (HMs), became the dominant species in the community. Further PICRUSt2 analysis showed that reducing metal transport across the membranes and increasing the efficiency of cellular reproduction were the main metabolic mechanisms of bacterial tolerance to HMs. Overall, the roots of Sasa argenteostriata were able to immobilize more heavy metals in PbZn tailing-contaminated soil, reducing the toxicity of HMs in the soil, and then influencing the rhizobacteria to change the community structure and metabolism mechanism to adapt to the HM-contaminated environment, and the soil fertility was increased, which together promoted the health and stability of the soil. This study is the first to illustrate the phytoremediation potential and response of the rhizobacterial community of Sasa argenteostriata under multimetal contamination of PbZn tailings. The results of the study provide some guidance for the practice of lead-zinc tailing-phytoremediation and soil health.


Assuntos
Metais Pesados , Sasa , Poluentes do Solo , Zinco/análise , Sasa/metabolismo , Cádmio/metabolismo , Ecossistema , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental , Plantas/metabolismo , Solo/química
4.
Ecotoxicol Environ Saf ; 284: 116904, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168083

RESUMO

Plant lead (Pb) tolerance and accumulation are key characteristics affecting phytoremediation efficiency. Bermudagrass is an excellent candidate for the remediation of Pb-polluted soil, and it needs to be mowed regularly. Here, we explored the effect of different mowing frequencies on the remediation of Pb-contaminated soil using bermudagrass. Mowing was found to decrease the biomass and photosynthetic efficiency of bermudagrass under Pb stress, thereby inhibiting its growth. Although mowing exacerbated membrane peroxidation, successive mowing treatments alleviated peroxidation damage by regulating enzymatic and nonenzymatic systems. A comprehensive evaluation of Pb tolerance revealed that all the mowing treatments reduced the Pb tolerance of bermudagrass, and a once-per-month mowing frequency had a less negative effect on Pb tolerance than did more frequent mowing. In terms of Pb enrichment, mowing significantly increased the Pb concentration, total Pb accumulation, translocation factor (TF), and bioenrichment factor (BCF) of bermudagrass. The total Pb accumulation was greatest under the once-a-month treatment, while the TF and BCF values were greatest under the three-times-a-month mowing treatment. Additionally, the decrease in soil pH and DOC were significantly correlated with the soil available Pb content and plant Pb accumulation parameters. The results showed that changes in the rhizosphere are crucial factors regulating Pb uptake in bermudagrass during mowing. Overall, once-a-month mowing minimally affects Pb tolerance and maximizes Pb accumulation, making it the optimal mowing frequency for soil Pb remediation by bermudagrass. This study provides a novel approach for the remediation of Pb-contaminated soil with bermudagrass based on mowing.

5.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564858

RESUMO

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Assuntos
Gênero Iris , Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Zinco/toxicidade , Desenvolvimento Vegetal , Poluentes do Solo/toxicidade
6.
Planta ; 257(3): 52, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757459

RESUMO

MAIN CONCLUSION: Enhanced secretion of Na+ and Cl- in leaf glands and leaf vacuolar sequestration of Na+ or root retention of Cl-, combined with K+ retention, contribute to the improved salt tolerance of tetraploid recretohalophyte P. auriculata. Salt stress is one of the major abiotic factors threatening plant growth and development, and polyploids generally exhibit higher salt stress resistance than diploids. In recretohalophytes, which secrete ions from the salt gland in leaf epidermal cells, the effects of polyploidization on ion homeostasis and secretion remain unknown. In this study, we compared the morphology, physiology, and ion homeostasis regulation of diploid and autotetraploid accessions of the recretohalophyte Plumbago auriculata Lam. after treatment with 300 mM NaCl for 0, 2, 4, 6, and 8 days. The results showed that salt stress altered the morphology, photosynthetic efficiency, and chloroplast structure of diploid P. auriculata to a greater extent than those of its tetraploid counterpart. Moreover, the contents of organic osmoregulatory substances (proline and soluble sugars) were significantly higher in the tetraploid than in the diploid, while those of H2O2 and malondialdehyde (MDA) were significantly lower. Analysis of ion homeostasis revealed that the tetraploid cytotype accumulated more Na+ in stems and leaves and more Cl- in roots but less K+ loss in roots compared with diploid P. auriculata. Additionally, the rate of Na+ and Cl- secretion from the leaf surface was higher, while that of K+, Mg2+, and Ca2+ secretion was lower in tetraploid plants. X-ray microanalysis of mesophyll cells revealed that Na+ mainly accumulated in different cellular compartments in the tetraploid (vacuole) and diploid (cytoplasm) plants. Our results suggest that polyploid recretohalophytes require the ability to sequester Na+ and Cl-(via accumulation in leaf cell vacuoles or unloading by roots) and selectively secrete these ions (through salt glands) together with the ability to prevent K+ loss (by roots). This mechanism required to maintain K+/Na+ homeostasis in polyploid recretohalophytes under high salinity provides new insights in the improved maintenance of ion homeostasis in polyploids under salt stress.


Assuntos
Plumbaginaceae , Tetraploidia , Plumbaginaceae/genética , Tolerância ao Sal , Peróxido de Hidrogênio , Sódio , Poliploidia , Folhas de Planta/genética
7.
Ecotoxicol Environ Saf ; 261: 115101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290296

RESUMO

Cadmium (Cd) pollution is a global problem affecting soil ecology and plant growth. Abscisic acid (ABA) acts as a growth and stress hormone, regulates cell wall synthesis, and plays an important role in plant responses to stress. There are few studies on the mechanisms behind abscisic acid alleviation of cadmium stress in Cosmos bipinnatus, especially in regards to regulation of the root cell wall. This study examined the effects of different concentrations of abscisic acid at different concentrations of cadmium stress. Through adding 5 µmol/L and 30 µmol/L cadmium, followed by spraying 10 µmol/L and 40 µmol/L ABA in a hydroponic experiment, it was found that under two concentrations of cadmium stress, low concentration of ABA improved root cell wall polysaccharide, Cd, and uronic acid content. Especially in pectin, after the application of low concentration ABA, the cadmium concentration was significantly increased by 1.5 times and 1.2 times compared with the Cd concentration under Cd5 and Cd30 treatment alone, respectively. Fourier-Transform Infrared spectroscopy (FTIR) demonstrated that cell wall functional groups such as -OH and -COOH were increased with exposure to ABA. Additionally, the exogenous ABA also increased expression of three kinds of antioxidant enzymes and plant antioxidants. The results of this study suggest that ABA could reduce Cd stress by increasing Cd accumulation, promoting Cd adsorption on the root cell wall, and activating protective mechanisms. This result could help promote application of C. bipinnatus for phytostabilization of cadmium-contaminated soil.


Assuntos
Asteraceae , Cádmio , Cádmio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Adsorção , Asteraceae/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445637

RESUMO

Augmented Renal Clearance (ARC) refers to the increased renal clearance of circulating solute in critically ill patients. In this study, the analytical research method of transcriptomics combined with metabolomics was used to study the pathogenesis of ARC at the transcriptional and metabolic levels. In transcriptomics, 534 samples from 5 datasets in the Gene Expression Omnibus database were analyzed and 834 differential genes associated with ARC were obtained. In metabolomics, we used Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry to determine the non-targeted metabolites of 102 samples after matching propensity scores, and obtained 45 differential metabolites associated with ARC. The results of the combined analysis showed that purine metabolism, arginine biosynthesis, and arachidonic acid metabolism were changed in patients with ARC. We speculate that the occurrence of ARC may be related to the alteration of renal blood perfusion by LTB4R, ARG1, ALOX5, arginine and prostaglandins E2 through inflammatory response, as well as the effects of CA4, PFKFB2, PFKFB3, PRKACB, NMDAR, glutamate and cAMP on renal capillary wall permeability.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Metabolômica/métodos , Arginina/genética , Perfilação da Expressão Gênica , Cromatografia Líquida de Alta Pressão/métodos , Fosfofrutoquinase-2
9.
Crit Care ; 26(1): 109, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428349

RESUMO

BACKGROUND: High-flow nasal cannula (HFNC) can improve ventilatory function in patients with acute COPD exacerbation. However, its effect on clinical outcomes remains uncertain. METHODS: This randomized controlled trial was conducted from July 2017 to December 2020 in 16 tertiary hospitals in China. Patients with acute COPD exacerbation with mild hypercapnia (pH ≥ 7.35 and arterial partial pressure of carbon dioxide > 45 mmHg) were randomly assigned to either HFNC or conventional oxygen therapy. The primary outcome was the proportion of patients who met the criteria for intubation during hospitalization. Secondary outcomes included treatment failure (intolerance and need for non-invasive or invasive ventilation), length of hospital stay, hospital cost, mortality, and readmission at day 90. RESULTS: Among 337 randomized patients (median age, 70.0 years; 280 men [83.1%]; median pH 7.399; arterial partial pressure of carbon dioxide 51 mmHg), 330 completed the trial. 4/158 patients on HFNC and 1/172 patient on conventional oxygen therapy met the criteria for intubation (P = 0.198). Patients progressed to NPPV in both groups were comparable (15 [9.5%] in the HFNC group vs. 22 [12.8%] in the conventional oxygen therapy group; P = 0.343). Compared with conventional oxygen therapy, HFNC yielded a significantly longer median length of hospital stay (9.0 [interquartile range, 7.0-13.0] vs. 8.0 [interquartile range, 7.0-11.0] days) and a higher median hospital cost (approximately $2298 [interquartile range, $1613-$3782] vs. $2005 [interquartile range, $1439-$2968]). There were no significant differences in other secondary outcomes between groups. CONCLUSIONS: In this multi-center randomized controlled study, HFNC compared to conventional oxygen therapy did not reduce need for intubation among acute COPD exacerbation patients with mild hypercapnia. The future studies should focus on patients with acute COPD exacerbation with respiratory acidosis (pH < 7.35). However, because the primary outcome rate was well below expected, the study was underpowered to show a meaningful difference between the two treatment groups. TRIAL REGISTRATION: NCT03003559 . Registered on December 28, 2016.


Assuntos
Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Insuficiência Respiratória , Idoso , Cânula , Dióxido de Carbono , Feminino , Humanos , Hipercapnia/terapia , Masculino , Oxigênio , Oxigenoterapia , Insuficiência Respiratória/terapia
10.
Ecotoxicol Environ Saf ; 241: 113755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689889

RESUMO

Lead (Pb) is one of the most harmful, toxic pollutants to the ecological environment and humans. Centipedegrass, a fast-growing warm-season turfgrass, is excellent for Pb pollution remediation. Exogenous low-molecular-weight organic acid (LMWOA) treatment is a promising approach for assisted phytoremediation. However, the effects of this treatment on the tolerance and Pb accumulation of centipedegrass are unclear. This study investigated these effects on the physiological growth response and Pb accumulation distribution characteristics of centipedegrass. Applications of 400 µM citric acid (CA), malic acid (MA) and tartaric acid (TA) significantly reduced membrane lipid peroxidation levels of leaves and improved biomass production of Pb-stressed plants. These treatments mainly increased peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and enhanced free protein (Pro), ascorbic acid (AsA) and phytochelatins (PCs) contents, ultimately improving the Pb tolerance of centipedegrass. Their promoting effects decreased as follows: TA>CA>MA. All the treatments decreased root Pb concentrations and increased stem and leaf Pb concentrations, thus increasing total Pb accumulation and TF values. MA had the best and worst effects on Pb accumulation and Pb transportation, respectively. CA had the best and worst effects on Pb transportation and Pb accumulation, respectively. TA exhibited strong effects on both Pb accumulation and transport. Furthermore, all treatments changed the subcellular Pb distribution patterns and distribution models of the chemical forms of Pb in each tissue. The root Pb concentration was more highly correlated with the Pb subcellular fraction distribution pattern, while the stem and leaf Pb concentrations were more highly correlated with the distribution models of the chemical forms of Pb. Overall, TA improved plant Pb tolerance best and promoted both Pb absorption and transportation well and is considered the best candidate for Pb-contaminated soil remediation with centipedegrass. This study provides a new idea for Pb-contaminated soil remediation with centipedegrass combined with LMWOAs.


Assuntos
Chumbo , Poluentes do Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Ácido Cítrico/metabolismo , Humanos , Chumbo/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo , Poluentes do Solo/metabolismo , Estresse Fisiológico
11.
Ecotoxicol Environ Saf ; 238: 113603, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35551046

RESUMO

Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.


Assuntos
Sasa , Poluentes do Solo , Biodegradação Ambiental , Quelantes/farmacologia , Ácido Edético/farmacologia , Chumbo/toxicidade , Ácido Nitrilotriacético , Plantas , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
J Happiness Stud ; 23(6): 2703-2724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399579

RESUMO

Second-generation mindfulness-based interventions (SG-MBIs) align well with positive psychology philosophy and practices, but trials of SG-MBIs have largely focused on ill-being. This study developed a mindfulness-based positive psychology (MBPP) intervention integrating positive psychology with an SG-MBI to enhance well-being. A randomized control trial was performed to compare MBPP with a waitlist condition among 138 Chinese participants. The results showed that MBPP significantly reduced negative emotions for subjective well-being and significantly improved environmental mastery for psychological well-being. Improvements in self-compassion and negative attitudes but not avoidance, mediated changes in well-being. Changes in positive emotions, positive relations, and awareness were associated with the amount of meditation practice. These findings showed that MBPP is promising for improving well-being and that the positive psychology components play important roles. Broadly, the study illustrated that positive psychology and SG-MBIs can be effectively integrated, and it supported the further application of SG-MBIs from the positive psychology perspective. Supplementary Information: The online version contains supplementary material available at 10.1007/s10902-022-00525-2.

13.
J Med Virol ; 93(1): 434-440, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603535

RESUMO

This retrospective, multicenter study investigated the risk factors associated with intensive care unit (ICU) admission and transfer in 461 adult patients with confirmed coronavirus disease 2019 (COVID-19) hospitalized from 22 January to 14 March 2020 in Hunan, China. Outcomes of ICU and non-ICU patients were compared, and a simple nomogram for predicting the probability of ICU transfer after hospital admission was developed based on initial laboratory data using a Cox proportional hazards regression model. Differences in laboratory indices were observed between patients admitted to the ICU and those who were not admitted. Several independent predictors of ICU transfer in COVID-19 patients were identified including older age (≥65 years) (hazard ratio [HR] = 4.02), hypertension (HR = 2.65), neutrophil count (HR = 1.11), procalcitonin level (HR = 3.67), prothrombin time (HR = 1.28), and D-dimer level (HR = 1.25). The lymphocyte count and albumin level were negatively associated with mortality (HR = 0.08 and 0.86, respectively). The developed model provides a means for identifying, at hospital admission, the subset of patients with COVID-19 who are at high risk of progression and would require transfer to the ICU within 3 and 7 days after hospitalization. This method of early patient triage allows a more effective allocation of limited medical resources.


Assuntos
COVID-19/patologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Laboratórios/estatística & dados numéricos , Adulto , Idoso , COVID-19/mortalidade , COVID-19/virologia , China , Feminino , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/patogenicidade
14.
Bioorg Chem ; 110: 104781, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677246

RESUMO

Forty-three quinolizidine alkaloids (1-43), including twelve new matrine-type ones, sophalodes A-L (1-7, 17, 19 and 28-30), were isolated from the seeds of Sophora alopecuroides. Structurally, compounds 1-4 were the first examples of C-11 oxidized matrine-type alkaloids from Sophora plants. The structures and absolute configurations of new compounds were elucidated by extensive spectroscopic techniques, X-ray diffraction analysis, and quantum chemical calculation. In addition, the NMR data and absolute configuration of compound 18 was reported for the first time. All the isolates were evaluated for their inhibition on nitric oxide production induced by lipopolysaccharide in RAW 264.7 macrophages, among them, compounds 29, 38 and 42 exhibited the most significant activity with IC50 values of 29.19, 25.86 and 33.30 µM, respectively. Further research about new compound 29 showed that it also suppressed the protein levels of iNOS and COX-2, which revealed its anti-inflammatory potential. Moreover, additional research showed that compound 16 exhibited marginal cytotoxicity against HeLa cell lines, with an IC50 value of 24.27 µM.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Simulação de Acoplamento Molecular , Quinolizidinas/farmacologia , Sophora/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Quinolizidinas/química , Quinolizidinas/isolamento & purificação , Células RAW 264.7 , Relação Estrutura-Atividade
15.
J Plant Res ; 134(3): 543-557, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33611698

RESUMO

Ceratostigma willmottianum (Plumbaginaceae) is a perennial herb native to China. Many species of Plumbaginaceae have been reported to exhibit heterostyly. Determining the functional breeding system of C. willmottianum can improve our understanding of the reproductive ecology of heterostylous plants. We investigated the floral traits and pollen and stigma characteristics in a natural population, and artificial pollination was carried out in an artificial population. It was found that C. willmottianum was distylous with short (S)- and long (L)-styled morphs, did not exhibit precise reciprocal herkogamy and was partially self-compatible but primarily outcrossing. In the artificial pollination experiments, the pollen tubes reached the base of the style under intermorph pollination, whereas they rarely penetrated the style under intramorph pollination and self-pollination. Both the L and S morphs exhibited a high seed set after intermorph pollination, whereas the seed set under intramorph pollination was lower. Therefore, C. willmottianum may spread the chance of receiving pollen between the two morphs by nonreciprocal heterostyly, which may be a unique mode of ecological adaptation in Plumbaginaceae. We believe that our discovery could provide new ideas regarding the origin and evolution of heterostyly.


Assuntos
Plumbaginaceae , China , Flores , Melhoramento Vegetal , Polinização
16.
Ecotoxicol Environ Saf ; 207: 111500, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254388

RESUMO

Dwarf bamboos are clonal plants with potential applications in the remediation of heavy metal-polluted soils, although their pollution adaptation strategies are unknown. This study examined the biomass allocation strategies and lead (Pb) enrichment characteristics of various dwarf bamboo tissues by the end of the growing season and explored their potential for phytoremediation of Pb stress in the soils. Six dwarf bamboo genotypes were treated with three levels (0, 300, and 1500 mg kg-1) of soil Pb stress. The majority of the bamboos adopted two biomass allocation strategies to adapt to Pb stress, namely, "reducing biomass allocation into new bamboo growth" and "increasing/stabilizing biomass allocation into rhizomes". Pb accumulation was highest in the roots, rhizomes, and old stems and showed the following trend: rhizomes/old stems> new roots/old roots> old leaves> new leaves> new stems among various tissues. Moreover, the six bamboos used three different Pb-enrichment strategies, as follows: (i) "rhizome domination and old stem synergy" (Sasaella glabra (Nakai) f. albo-striata Muroi, Sasa auricoma (Mitford) E.G. Camus, Sasa fortunei (Van Houtte) Fiori, and Shibataea lanceifolia C.H. Hu); (ii) "old stem domination and rhizome synergy" (Indocalamus decorus Q.H. Dai); and (iii) "old stem domination and new root synergy" (Sasa argenteostriata (Regel) E.G. Camus). In Pb-contaminated soils, genotypes with TFs greater than 1 were Sasa fortunei (Van Houtte) Fiori, Sasa argenteostriata (Regel) E.G. Camus, and Indocalamus decorus Q.H. Dai; in addition, only S. argenteostriata had BCF values greater than 1. Furthermore, this study provides the first evidence that S. argenteostriata can extract 0.22 and 0.58 mgplant-1 of Pb ions in soil polluted with 300 and 1500 mg kg-1 Pb, respectively. S. argenteostriata showed the greatest potential for phytoremediation among the bamboo genotypes in both Pb-contaminated urban and mining sites.


Assuntos
Chumbo/toxicidade , Sasa/toxicidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , Poluentes Ambientais , Chumbo/metabolismo , Metais Pesados/análise , Mineração , Folhas de Planta/química , Raízes de Plantas/química , Plantas , Poaceae/metabolismo , Poaceae/toxicidade , Sasa/metabolismo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
17.
Pharmazie ; 76(11): 559-561, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782041

RESUMO

Rett syndrome is an X-linked dominant disorder, and the typical phenotype includes intractable epileptic seizures and severe mental retardation, in particular, a rapid regression in language and limited progress in psychomotor development. Premature breast and pubic hair development and advanced bone age are signs of precocious puberty (PP), defined as puberty occurring before 8 years of age in girls. There are rare reports about precious puberty associated with Rett syndrome. Herein, we report the case of a patient with Rett syndrome with precocious puberty. Her first signs of PP occurred 6 months prior to presentation (at 7.5 years old), and the laboratory measurements, including tests of bone age and gonadotropin-releasing hormone stimulation, were positive for PP. PP was controlled after treatment with leuprorelin 3.75 mg for one year. In addition, the genetic and phenotypic spectrum of previously reported cases of Rett syndrome with precocious puberty are reviewed and summarized.


Assuntos
Puberdade Precoce , Síndrome de Rett , Feminino , Hormônio Liberador de Gonadotropina , Humanos , Puberdade Precoce/diagnóstico , Puberdade Precoce/genética , Síndrome de Rett/complicações
18.
J Urban Health ; 97(2): 191-203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898198

RESUMO

There is a close relationship between urban green space and the physical and mental health of individuals. Most previous studies have discussed the impact of the structure of green space and its elements. This study focused on the emotional changes caused by common behaviors in urban green space (walking and sitting). We recruited 40 college students and randomly assigned them to walking and sitting groups (20 students per group). The two groups performed the same 8-min high-pressure learning task indoors and then performed 8-min recovery activities in a simulated urban green space (a bamboo-lawn space). We used the Emotiv EPOC+ EEG headset to dynamically measure six neural emotional parameters: "engagement," "valence," "meditation," "frustration," "focus," and "excitement." We conducted a pretest and posttest and used analysis of covariance (ANCOVA) to analyze the posttest data (with the pretest data as covariates). The results of the comparison of the two behaviors showed that the "valence" and "meditation" values of the walking group were higher than those of the sitting group, which suggests that walking in urban green space is more favorable for stress reduction. The sitting group had a higher "focus" value than did the walking group, which suggests that sitting in urban green space is better for attention restoration. The results of this study can provide guidance for urban green space planning and design as well as health guidance for urban residents.


Assuntos
Monitoramento Biológico/métodos , Eletroencefalografia/métodos , Emoções , Aplicativos Móveis , Postura Sentada , Caminhada/fisiologia , Caminhada/psicologia , Adulto , China , Feminino , Humanos , Masculino , Saúde Mental/estatística & dados numéricos , Parques Recreativos , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Adulto Jovem
19.
Ecotoxicol Environ Saf ; 187: 109831, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654868

RESUMO

Lead is one of the most hazardous pollutants to both the environment as well as human beings. As one of the approaches to enhance phytoremediation, brassinosteroids are predicted as a potential candidate phytohormone for assisted phytoremediation. Few studies have focused on the physiological regulations of tall fescue plants (Festuca arundinacea Schreb.), a potential phytoremediation species, for its responses to applications of brassinosteroids under lead stress. Therefore, the objectives of this study were to investigate the effects of foliar application of 24-epibrassinolide, a brassinosteroids analogue, on reactive oxygen species accumulation and antioxidative defense systems of tall fescue when exposed to lead, and ultimately its potential to be used in phytoremediation. When exposed to lead (1000 mg/kg) for 80 d, decreases in shoot and root biomass of tall fescue biomass as well as chlorophyll and carotenoid productions were found. Foliar application of 24-epibrassinolide at three rates and five applications every 7 d improved the biomass of both shoots and roots, and increased the photosynthetic pigments. The improved lead tolerance in tall fescue plants after 24-epibrassinolide applications was associated with reduced H2O2 and O2.- accumulations and increased antioxidative enzyme activities including superoxide dismutase, catalase, and guaiacol peroxidase. Additionally, osmoprotectants increased and lipid peroxidation decreased. Ultimately, foliar applications of 24-epibrassinolide enhanced the lead recovery rate of tall fescue plants, proving its potential role in phytoremediation for soil contaminated with heavy metals such as lead.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Festuca/efeitos dos fármacos , Chumbo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Esteroides Heterocíclicos/farmacologia , Biodegradação Ambiental , Clorofila/metabolismo , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Chumbo/metabolismo , Peroxidação de Lipídeos , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
20.
Ecotoxicol Environ Saf ; 193: 110329, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088553

RESUMO

Dwarf bamboo Sasa argenteostriata (Regel) E.G. Camus is considered as potential plants for metal phytoremediation in previous filed observations. However, the mechanisms of lead (Pb) detoxification has not been described. The objective of this study was to explore the difference strategies or mechanisms of Pb detoxification in plant tissues. In this regard, four Pb treatments with hydroponics including 0 (control), 300, 600, and 900 mg L-1 were conducted to examine subcellular compartmentalization, Pb accumulation/species and antioxidant-assisted chelation. Our findings showed the retention of Pb by the whip-root system is one of its detoxification mechanisms to avoid damage the shoots. In addition, the cell wall retention is the dominant detoxification strategy of whips, new roots, old roots and new/old stems, while vacuolar compartmentalization is for new/old leaves. Interestingly, four low-mobility/-toxicity Pb species (i.e., FNaCl, FHAc, FHCl and FR) are distributed in roots, whips and stems, while two high-mobility/-toxicity Pb species (FE and FW) in leaves. The conversion of Pb to low-toxicity/-migration is a Pb-detoxification strategy in roots, whips and stems but not in leaves. Besides, the new/old roots and leaves can alleviate Pb damage through the synthesis of non-protein thiol, glutathione and phytochelatins. Among these, phytochelatins play a leading role in the detoxification in new/old roots, while glutathione is in new/old leaves. This study provides the first comprehensive evidence regarding the different strategies for Pb detoxification in dwarf bamboo tissues from physiological to cellular level, supporting that this plant could be rehabilitated for phytoremediation in Pb-contaminated media.


Assuntos
Poluentes Ambientais/farmacocinética , Chumbo/farmacocinética , Sasa/metabolismo , Antioxidantes/metabolismo , Biodegradação Ambiental , Parede Celular/metabolismo , Poluentes Ambientais/toxicidade , Glutationa/metabolismo , Hidroponia , Inativação Metabólica , Chumbo/toxicidade , Fitoquelatinas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA