Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2014: 136920, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013844

RESUMO

Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.


Assuntos
Algoritmos , Aprendizagem , Ensino/métodos
2.
ScientificWorldJournal ; 2014: 836272, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170526

RESUMO

A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.


Assuntos
Algoritmos
3.
Math Biosci Eng ; 21(2): 2432-2457, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38454690

RESUMO

Evolutionary multitasking optimization (EMTO) handles multiple tasks simultaneously by transferring and sharing valuable knowledge from other relevant tasks. How to effectively identify transferred knowledge and reduce negative knowledge transfer are two key issues in EMTO. Many existing EMTO algorithms treat the elite solutions in tasks as transferred knowledge between tasks. However, these algorithms may not be effective enough when the global optimums of the tasks are far apart. In this paper, we study an adaptive evolutionary multitasking optimization algorithm based on population distribution information to find valuable transferred knowledge and weaken the negative transfer between tasks. In this paper, we first divide each task population into K sub-populations based on the fitness values of the individuals, and then the maximum mean discrepancy (MMD) is utilized to calculate the distribution difference between each sub-population in the source task and the sub-population where the best solution of the target task is located. Among the sub-populations of the source task, the sub-population with the smallest MMD value is selected, and the individuals in it are used as transferred individuals. In this way, the solution chosen for the transfer may be an elite solution or some other solution. In addition, an improved randomized interaction probability is also included in the proposed algorithm to adjust the intensity of inter-task interactions. The experimental results on two multitasking test suites demonstrate that the proposed algorithm achieves high solution accuracy and fast convergence for most problems, especially for problems with low relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA